[29100cb] | 1 | |
---|
| 2 | from sans.models.BaseComponent import BaseComponent |
---|
[18695bf] | 3 | from math import exp, sqrt |
---|
| 4 | from numpy import power |
---|
[29100cb] | 5 | from scipy.special import erf |
---|
| 6 | max_level_n = 7 |
---|
| 7 | class UnifiedPowerRgModel(BaseComponent): |
---|
| 8 | """ |
---|
| 9 | This model is based on Exponential/Power-law fit method developed |
---|
| 10 | by G. Beaucage |
---|
| 11 | """ |
---|
| 12 | def __init__(self, multfactor=1): |
---|
| 13 | BaseComponent.__init__(self) |
---|
| 14 | """ |
---|
| 15 | :param multfactor: number of levels in the model, assumes 0<= level# <=5. |
---|
| 16 | """ |
---|
| 17 | |
---|
| 18 | ## Setting model name model description |
---|
| 19 | self.name = "UnifiedPowerRg" |
---|
| 20 | self.description="""Multiple Levels of Unified Exponential/Power-law Method. |
---|
| 21 | Up to Level 6 is provided. |
---|
| 22 | Note; the additional Level 0 is an inverse linear function, |
---|
| 23 | i.e., y = scale/x + background. |
---|
| 24 | The Level N is defined as |
---|
| 25 | y = background + scale * Sum(1..N)[G_i*exp(-x^2*Rg_i^2/3) |
---|
| 26 | + B_i/x^(power_i)*(erf(x*Rg_i/sqrt(6))^(3*power_i))]. |
---|
| 27 | Ref: |
---|
| 28 | G. Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728. |
---|
| 29 | G. Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146. |
---|
| 30 | """ |
---|
| 31 | self.level_num = multfactor |
---|
| 32 | ## Define parameters |
---|
| 33 | self.params = {} |
---|
| 34 | |
---|
| 35 | ## Parameter details [units, min, max] |
---|
| 36 | self.details = {} |
---|
| 37 | |
---|
| 38 | # non-fittable parameters |
---|
| 39 | self.non_fittable = [] |
---|
| 40 | |
---|
| 41 | # list of function in order of the function number |
---|
| 42 | self.fun_list = self._get_func_list() |
---|
| 43 | ## dispersion |
---|
| 44 | self._set_dispersion() |
---|
| 45 | ## Define parameters |
---|
| 46 | self._set_params() |
---|
| 47 | |
---|
| 48 | ## Parameter details [units, min, max] |
---|
| 49 | self._set_details() |
---|
| 50 | |
---|
| 51 | #list of parameter that can be fitted |
---|
| 52 | self._set_fixed_params() |
---|
| 53 | |
---|
| 54 | ## functional multiplicity of the model |
---|
| 55 | self.multiplicity_info = [max_level_n,"Level No.:",[],[]] |
---|
| 56 | |
---|
| 57 | def _unifiedpowerrg(self,x): |
---|
| 58 | """ |
---|
| 59 | Scattering function |
---|
| 60 | |
---|
| 61 | :param x: q value(s) |
---|
| 62 | :return answer: output of the function |
---|
| 63 | """ |
---|
| 64 | # common parameters for the model functions |
---|
| 65 | bkg = self.params['background'] |
---|
| 66 | scale = self.params['scale'] |
---|
| 67 | l_num = self.level_num |
---|
| 68 | # set default output |
---|
| 69 | answer = 0.0 |
---|
| 70 | # Set constant on lebel zero (special case) |
---|
| 71 | if l_num == 0: |
---|
| 72 | answer = scale / x + bkg |
---|
| 73 | return answer |
---|
| 74 | # rearrange the parameters for the given label no. |
---|
| 75 | for ind in range(1,l_num+1): |
---|
| 76 | # get exp term |
---|
[18695bf] | 77 | exp_now = exp(-power(x*self.params['Rg%s'% ind],2)/3.0) |
---|
[29100cb] | 78 | # get erf term |
---|
| 79 | erf_now = erf(x*self.params['Rg%s'% ind]/sqrt(6.0)) |
---|
| 80 | # get power term |
---|
[18695bf] | 81 | pow_now = power((erf_now*erf_now*erf_now/x),self.params['power%s'% ind]) |
---|
[29100cb] | 82 | # get next exp term only if it exists |
---|
| 83 | try: |
---|
[18695bf] | 84 | exp_next = exp(-power(x*self.params['Rg%s'% (ind+1)],2)/3.0) |
---|
[29100cb] | 85 | except: |
---|
| 86 | exp_next = 1.0 |
---|
| 87 | # get to the calculation |
---|
| 88 | answer += self.params['G%s'% ind]*exp_now + self.params['B%s'% ind]* \ |
---|
| 89 | exp_next * pow_now |
---|
| 90 | # take care of the singular point |
---|
| 91 | if x == 0.0: |
---|
| 92 | answer = 0.0 |
---|
| 93 | for ind in range(1,l_num+1): |
---|
| 94 | answer += self.params['G%s'% ind] |
---|
| 95 | # get scaled |
---|
| 96 | answer *= scale |
---|
| 97 | # add background |
---|
| 98 | answer += bkg |
---|
| 99 | return answer |
---|
| 100 | |
---|
| 101 | def _set_dispersion(self): |
---|
| 102 | """ |
---|
| 103 | model dispersions |
---|
| 104 | """ |
---|
| 105 | ##set dispersion from model |
---|
| 106 | self.dispersion = {} |
---|
| 107 | |
---|
| 108 | |
---|
| 109 | def _set_params(self): |
---|
| 110 | """ |
---|
| 111 | Concatenate the parameters of the model to create |
---|
| 112 | this model parameters |
---|
| 113 | """ |
---|
| 114 | # common parameters for the model functions |
---|
| 115 | self.params['background'] = 0.0 |
---|
| 116 | self.params['scale'] = 1.0 |
---|
| 117 | l_num = self.level_num |
---|
| 118 | # rearrange the parameters for the given label no. |
---|
| 119 | for ind in range(0,l_num+1): |
---|
| 120 | if ind == 0: |
---|
| 121 | continue |
---|
| 122 | # multiple factor for higher labels |
---|
| 123 | mult = 1.0 |
---|
| 124 | mul_pow = 1.0 |
---|
| 125 | if ind != l_num: |
---|
| 126 | mult = 10.0 * 4.0/3.0 |
---|
| 127 | mul_pow = 2.0 |
---|
| 128 | # Set reasonably define default values that consistent |
---|
| 129 | # w/NIST for label #1 |
---|
| 130 | self.params['G%s'% ind] = 0.3*mult*pow(10, \ |
---|
| 131 | (l_num+1 - float('%s'% ind))) |
---|
| 132 | self.params['Rg%s'% ind] = 21.0/mult*pow(10, \ |
---|
| 133 | (l_num - float('%s'% ind))) |
---|
| 134 | self.params['B%s'% ind] = 6e-03/mult*pow(10, \ |
---|
| 135 | -(l_num+1 - float('%s'% ind))) |
---|
| 136 | self.params['power%s'% ind] = 2.0 * mul_pow |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | def _set_details(self): |
---|
| 140 | """ |
---|
| 141 | Concatenate details of the original model to create |
---|
| 142 | this model details |
---|
| 143 | """ |
---|
| 144 | # common parameters for the model functions |
---|
| 145 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 146 | self.details['scale'] = ['', None, None] |
---|
| 147 | # rearrange the parameters for the given label no. |
---|
| 148 | for ind in range(0,self.level_num+1): |
---|
| 149 | if ind == 0: |
---|
| 150 | continue |
---|
| 151 | self.details['G%s'% ind] = ['[1/(cm.sr)]', None, None] |
---|
| 152 | self.details['Rg%s'% ind] = ['[A]', None, None] |
---|
| 153 | self.details['B%s'% ind] = ['[1/(cm.sr)]', None, None] |
---|
| 154 | self.details['power%s'% ind] = ['', None, None] |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | def _get_func_list(self): |
---|
| 158 | """ |
---|
| 159 | Get the list of functions in each cases |
---|
| 160 | """ |
---|
| 161 | func_list = {} |
---|
| 162 | return func_list |
---|
| 163 | |
---|
| 164 | def getProfile(self): |
---|
| 165 | """ |
---|
| 166 | Get SLD profile |
---|
| 167 | |
---|
| 168 | : return: None, No SLD profile supporting for this model |
---|
| 169 | """ |
---|
| 170 | return None |
---|
| 171 | |
---|
| 172 | def setParam(self, name, value): |
---|
| 173 | """ |
---|
| 174 | Set the value of a model parameter |
---|
| 175 | |
---|
| 176 | : param name: name of the parameter |
---|
| 177 | : param value: value of the parameter |
---|
| 178 | """ |
---|
| 179 | # set param to new model |
---|
| 180 | self._setParamHelper(name, value) |
---|
| 181 | |
---|
| 182 | def _setParamHelper(self, name, value): |
---|
| 183 | """ |
---|
| 184 | Helper function to setParam |
---|
| 185 | """ |
---|
| 186 | |
---|
| 187 | # Look for standard parameter |
---|
| 188 | for item in self.params.keys(): |
---|
| 189 | if item.lower()==name.lower(): |
---|
| 190 | self.params[item] = value |
---|
| 191 | return |
---|
| 192 | |
---|
| 193 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | def _set_fixed_params(self): |
---|
| 197 | """ |
---|
| 198 | Fill the self.fixed list with the model fixed list |
---|
| 199 | """ |
---|
| 200 | pass |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | def run(self, x = 0.0): |
---|
| 204 | """ |
---|
| 205 | Evaluate the model |
---|
| 206 | |
---|
| 207 | : param x: input q-value (float or [float, float] as [r, theta]) |
---|
| 208 | : return: (DAB value) |
---|
| 209 | """ |
---|
| 210 | if x.__class__.__name__ == 'list': |
---|
| 211 | # Take absolute value of Q, since this model is really meant to |
---|
| 212 | # be defined in 1D for a given length of Q |
---|
| 213 | #qx = math.fabs(x[0]*math.cos(x[1])) |
---|
| 214 | #qy = math.fabs(x[0]*math.sin(x[1])) |
---|
| 215 | return self._unifiedpowerrg(x) |
---|
| 216 | elif x.__class__.__name__ == 'tuple': |
---|
| 217 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
| 218 | else: |
---|
| 219 | return self._unifiedpowerrg(x) |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | return self._unifiedpowerrg(x) |
---|
| 223 | |
---|
| 224 | def runXY(self, x = 0.0): |
---|
| 225 | """ |
---|
| 226 | Evaluate the model |
---|
| 227 | |
---|
| 228 | : param x: input q-value (float or [float, float] as [qx, qy]) |
---|
| 229 | : return: DAB value |
---|
| 230 | """ |
---|
| 231 | if x.__class__.__name__ == 'list': |
---|
| 232 | q = math.sqrt(x[0]**2 + x[1]**2) |
---|
| 233 | return self._unifiedpowerrg(x) |
---|
| 234 | elif x.__class__.__name__ == 'tuple': |
---|
| 235 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
| 236 | else: |
---|
| 237 | return self._unifiedpowerrg(x) |
---|
| 238 | |
---|
| 239 | def calculate_ER(self): |
---|
| 240 | """ |
---|
| 241 | """ |
---|
| 242 | # Not implemented!!! |
---|
| 243 | pass |
---|
| 244 | |
---|
| 245 | def set_dispersion(self, parameter, dispersion): |
---|
| 246 | """ |
---|
| 247 | Set the dispersion object for a model parameter |
---|
| 248 | |
---|
| 249 | : param parameter: name of the parameter [string] |
---|
| 250 | :dispersion: dispersion object of type DispersionModel |
---|
| 251 | """ |
---|
| 252 | pass |
---|