source: sasview/sansmodels/src/sans/models/TriaxialEllipsoidModel.py @ 5650ebf

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 5650ebf was 4628e31, checked in by Jae Cho <jhjcho@…>, 14 years ago

changed the unit of angles into degrees

  • Property mode set to 100644
File size: 5.6 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\triaxial_ellipsoid.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CTriaxialEllipsoidModel
29import copy   
30   
31class TriaxialEllipsoidModel(CTriaxialEllipsoidModel, BaseComponent):
32    """
33    Class that evaluates a TriaxialEllipsoidModel model.
34    This file was auto-generated from ..\c_extensions\triaxial_ellipsoid.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         semi_axisA      = 35.0 [A]
40         semi_axisB      = 100.0 [A]
41         semi_axisC      = 400.0 [A]
42         sldEll          = 1e-006 [1/A^(2)]
43         sldSolv         = 6.3e-006 [1/A^(2)]
44         background      = 0.0 [1/cm]
45         axis_theta      = 57.325 [deg]
46         axis_phi        = 57.325 [deg]
47         axis_psi        = 0.0 [deg]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CTriaxialEllipsoidModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "TriaxialEllipsoidModel"
60        ## Model description
61        self.description ="""Note: During fitting ensure that the inequality A<B<C is not
62                violated. Otherwise the calculation will
63                not be correct."""
64       
65        ## Parameter details [units, min, max]
66        self.details = {}
67        self.details['scale'] = ['', None, None]
68        self.details['semi_axisA'] = ['[A]', None, None]
69        self.details['semi_axisB'] = ['[A]', None, None]
70        self.details['semi_axisC'] = ['[A]', None, None]
71        self.details['sldEll'] = ['[1/A^(2)]', None, None]
72        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
73        self.details['background'] = ['[1/cm]', None, None]
74        self.details['axis_theta'] = ['[deg]', None, None]
75        self.details['axis_phi'] = ['[deg]', None, None]
76        self.details['axis_psi'] = ['[deg]', None, None]
77
78        ## fittable parameters
79        self.fixed=['axis_psi.width', 'axis_phi.width', 'axis_theta.width', 'semi_axisA.width', 'semi_axisB.width', 'semi_axisC.width']
80       
81        ## non-fittable parameters
82        self.non_fittable=[]
83       
84        ## parameters with orientation
85        self.orientation_params =['axis_psi', 'axis_phi', 'axis_theta', 'axis_psi.width', 'axis_phi.width', 'axis_theta.width']
86   
87    def clone(self):
88        """ Return a identical copy of self """
89        return self._clone(TriaxialEllipsoidModel())   
90       
91    def __getstate__(self):
92        """
93        return object state for pickling and copying
94        """
95        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
96       
97        return self.__dict__, model_state
98       
99    def __setstate__(self, state):
100        """
101        create object from pickled state
102       
103        :param state: the state of the current model
104       
105        """
106       
107        self.__dict__, model_state = state
108        self.params = model_state['params']
109        self.dispersion = model_state['dispersion']
110        self.log = model_state['log']
111       
112   
113    def run(self, x=0.0):
114        """
115        Evaluate the model
116       
117        :param x: input q, or [q,phi]
118       
119        :return: scattering function P(q)
120       
121        """
122       
123        return CTriaxialEllipsoidModel.run(self, x)
124   
125    def runXY(self, x=0.0):
126        """
127        Evaluate the model in cartesian coordinates
128       
129        :param x: input q, or [qx, qy]
130       
131        :return: scattering function P(q)
132       
133        """
134       
135        return CTriaxialEllipsoidModel.runXY(self, x)
136       
137    def evalDistribution(self, x=[]):
138        """
139        Evaluate the model in cartesian coordinates
140       
141        :param x: input q[], or [qx[], qy[]]
142       
143        :return: scattering function P(q[])
144       
145        """
146        return CTriaxialEllipsoidModel.evalDistribution(self, x)
147       
148    def calculate_ER(self):
149        """
150        Calculate the effective radius for P(q)*S(q)
151       
152        :return: the value of the effective radius
153       
154        """       
155        return CTriaxialEllipsoidModel.calculate_ER(self)
156       
157    def set_dispersion(self, parameter, dispersion):
158        """
159        Set the dispersion object for a model parameter
160       
161        :param parameter: name of the parameter [string]
162        :param dispersion: dispersion object of type DispersionModel
163       
164        """
165        return CTriaxialEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp)
166       
167   
168# End of file
Note: See TracBrowser for help on using the repository browser.