source: sasview/sansmodels/src/sans/models/TriaxialEllipsoidModel.py @ e2289b4

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since e2289b4 was f9a1279, checked in by Gervaise Alina <gervyh@…>, 15 years ago

correct typo for model.distribution

  • Property mode set to 100644
File size: 5.0 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\triaxial_ellipsoid.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CTriaxialEllipsoidModel
26import copy   
27   
28class TriaxialEllipsoidModel(CTriaxialEllipsoidModel, BaseComponent):
29    """ Class that evaluates a TriaxialEllipsoidModel model.
30        This file was auto-generated from ..\c_extensions\triaxial_ellipsoid.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         semi_axisA      = 35.0 [A]
36         semi_axisB      = 100.0 [A]
37         semi_axisC      = 400.0 [A]
38         contrast        = 5.3e-006 [1/A^(2)]
39         background      = 0.0 [1/cm]
40         axis_theta      = 1.0 [rad]
41         axis_phi        = 1.0 [rad]
42         axis_psi        = 0.0 [rad]
43
44    """
45       
46    def __init__(self):
47        """ Initialization """
48       
49        # Initialize BaseComponent first, then sphere
50        BaseComponent.__init__(self)
51        CTriaxialEllipsoidModel.__init__(self)
52       
53        ## Name of the model
54        self.name = "TriaxialEllipsoidModel"
55        ## Model description
56        self.description ="""Note: During fitting ensure that the inequality A<B<C is not
57                violated. Otherwise the calculation will
58                not be correct."""
59       
60        ## Parameter details [units, min, max]
61        self.details = {}
62        self.details['scale'] = ['', None, None]
63        self.details['semi_axisA'] = ['[A]', None, None]
64        self.details['semi_axisB'] = ['[A]', None, None]
65        self.details['semi_axisC'] = ['[A]', None, None]
66        self.details['contrast'] = ['[1/A^(2)]', None, None]
67        self.details['background'] = ['[1/cm]', None, None]
68        self.details['axis_theta'] = ['[rad]', None, None]
69        self.details['axis_phi'] = ['[rad]', None, None]
70        self.details['axis_psi'] = ['[rad]', None, None]
71
72        ## fittable parameters
73        self.fixed=['axis_psi.width', 'axis_phi.width', 'axis_theta.width', 'semi_axisA.width', 'semi_axisB.width', 'semi_axisC.width']
74       
75        ## parameters with orientation
76        self.orientation_params =['axis_psi', 'axis_phi', 'axis_theta', 'axis_psi.width', 'axis_phi.width', 'axis_theta.width']
77   
78    def clone(self):
79        """ Return a identical copy of self """
80        return self._clone(TriaxialEllipsoidModel())   
81       
82    def __getstate__(self):
83        """ return object state for pickling and copying """
84        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
85       
86        return self.__dict__, model_state
87       
88    def __setstate__(self, state):
89        """ create object from pickled state """
90       
91        self.__dict__, model_state = state
92        self.params = model_state['params']
93        self.dispersion = model_state['dispersion']
94        self.log = model_state['log']
95       
96   
97    def run(self, x = 0.0):
98        """ Evaluate the model
99            @param x: input q, or [q,phi]
100            @return: scattering function P(q)
101        """
102       
103        return CTriaxialEllipsoidModel.run(self, x)
104   
105    def runXY(self, x = 0.0):
106        """ Evaluate the model in cartesian coordinates
107            @param x: input q, or [qx, qy]
108            @return: scattering function P(q)
109        """
110       
111        return CTriaxialEllipsoidModel.runXY(self, x)
112       
113    def evalDistribution(self, x = []):
114        """ Evaluate the model in cartesian coordinates
115            @param x: input q[], or [qx[], qy[]]
116            @return: scattering function P(q[])
117        """
118        return CTriaxialEllipsoidModel.evalDistribution(self, x)
119       
120    def calculate_ER(self):
121        """ Calculate the effective radius for P(q)*S(q)
122            @return: the value of the effective radius
123        """       
124        return CTriaxialEllipsoidModel.calculate_ER(self)
125       
126    def set_dispersion(self, parameter, dispersion):
127        """
128            Set the dispersion object for a model parameter
129            @param parameter: name of the parameter [string]
130            @dispersion: dispersion object of type DispersionModel
131        """
132        return CTriaxialEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp)
133       
134   
135# End of file
Note: See TracBrowser for help on using the repository browser.