[5068697] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
[79ac6f8] | 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
[5068697] | 16 | |
---|
| 17 | |
---|
[79ac6f8] | 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
[5068697] | 20 | |
---|
[79ac6f8] | 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\triaxial_ellipsoid.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
[5068697] | 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CTriaxialEllipsoidModel |
---|
| 29 | import copy |
---|
| 30 | |
---|
| 31 | class TriaxialEllipsoidModel(CTriaxialEllipsoidModel, BaseComponent): |
---|
[79ac6f8] | 32 | """ |
---|
| 33 | Class that evaluates a TriaxialEllipsoidModel model. |
---|
| 34 | This file was auto-generated from ..\c_extensions\triaxial_ellipsoid.h. |
---|
| 35 | Refer to that file and the structure it contains |
---|
| 36 | for details of the model. |
---|
| 37 | List of default parameters: |
---|
[5068697] | 38 | scale = 1.0 |
---|
[3c102d4] | 39 | semi_axisA = 35.0 [A] |
---|
| 40 | semi_axisB = 100.0 [A] |
---|
[5068697] | 41 | semi_axisC = 400.0 [A] |
---|
[13eb1c4] | 42 | sldEll = 1e-006 [1/A^(2)] |
---|
| 43 | sldSolv = 6.3e-006 [1/A^(2)] |
---|
[5068697] | 44 | background = 0.0 [1/cm] |
---|
[3c102d4] | 45 | axis_theta = 1.0 [rad] |
---|
| 46 | axis_phi = 1.0 [rad] |
---|
[975ec8e] | 47 | axis_psi = 0.0 [rad] |
---|
[5068697] | 48 | |
---|
| 49 | """ |
---|
| 50 | |
---|
| 51 | def __init__(self): |
---|
| 52 | """ Initialization """ |
---|
| 53 | |
---|
| 54 | # Initialize BaseComponent first, then sphere |
---|
| 55 | BaseComponent.__init__(self) |
---|
| 56 | CTriaxialEllipsoidModel.__init__(self) |
---|
| 57 | |
---|
| 58 | ## Name of the model |
---|
| 59 | self.name = "TriaxialEllipsoidModel" |
---|
| 60 | ## Model description |
---|
[7ad9887] | 61 | self.description ="""Note: During fitting ensure that the inequality A<B<C is not |
---|
| 62 | violated. Otherwise the calculation will |
---|
| 63 | not be correct.""" |
---|
[5068697] | 64 | |
---|
[fe9c19b4] | 65 | ## Parameter details [units, min, max] |
---|
[5068697] | 66 | self.details = {} |
---|
| 67 | self.details['scale'] = ['', None, None] |
---|
| 68 | self.details['semi_axisA'] = ['[A]', None, None] |
---|
[3c102d4] | 69 | self.details['semi_axisB'] = ['[A]', None, None] |
---|
[5068697] | 70 | self.details['semi_axisC'] = ['[A]', None, None] |
---|
[13eb1c4] | 71 | self.details['sldEll'] = ['[1/A^(2)]', None, None] |
---|
| 72 | self.details['sldSolv'] = ['[1/A^(2)]', None, None] |
---|
[5068697] | 73 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 74 | self.details['axis_theta'] = ['[rad]', None, None] |
---|
| 75 | self.details['axis_phi'] = ['[rad]', None, None] |
---|
[975ec8e] | 76 | self.details['axis_psi'] = ['[rad]', None, None] |
---|
[5068697] | 77 | |
---|
[fe9c19b4] | 78 | ## fittable parameters |
---|
[975ec8e] | 79 | self.fixed=['axis_psi.width', 'axis_phi.width', 'axis_theta.width', 'semi_axisA.width', 'semi_axisB.width', 'semi_axisC.width'] |
---|
[5068697] | 80 | |
---|
[35aface] | 81 | ## non-fittable parameters |
---|
| 82 | self.non_fittable=[] |
---|
| 83 | |
---|
[5068697] | 84 | ## parameters with orientation |
---|
[975ec8e] | 85 | self.orientation_params =['axis_psi', 'axis_phi', 'axis_theta', 'axis_psi.width', 'axis_phi.width', 'axis_theta.width'] |
---|
[5068697] | 86 | |
---|
| 87 | def clone(self): |
---|
| 88 | """ Return a identical copy of self """ |
---|
| 89 | return self._clone(TriaxialEllipsoidModel()) |
---|
[fe9c19b4] | 90 | |
---|
| 91 | def __getstate__(self): |
---|
[79ac6f8] | 92 | """ |
---|
| 93 | return object state for pickling and copying |
---|
| 94 | """ |
---|
[fe9c19b4] | 95 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 96 | |
---|
| 97 | return self.__dict__, model_state |
---|
| 98 | |
---|
| 99 | def __setstate__(self, state): |
---|
[79ac6f8] | 100 | """ |
---|
| 101 | create object from pickled state |
---|
| 102 | |
---|
| 103 | :param state: the state of the current model |
---|
| 104 | |
---|
| 105 | """ |
---|
[fe9c19b4] | 106 | |
---|
| 107 | self.__dict__, model_state = state |
---|
| 108 | self.params = model_state['params'] |
---|
| 109 | self.dispersion = model_state['dispersion'] |
---|
| 110 | self.log = model_state['log'] |
---|
| 111 | |
---|
[5068697] | 112 | |
---|
[79ac6f8] | 113 | def run(self, x=0.0): |
---|
| 114 | """ |
---|
| 115 | Evaluate the model |
---|
| 116 | |
---|
| 117 | :param x: input q, or [q,phi] |
---|
| 118 | |
---|
| 119 | :return: scattering function P(q) |
---|
| 120 | |
---|
[5068697] | 121 | """ |
---|
| 122 | |
---|
| 123 | return CTriaxialEllipsoidModel.run(self, x) |
---|
| 124 | |
---|
[79ac6f8] | 125 | def runXY(self, x=0.0): |
---|
| 126 | """ |
---|
| 127 | Evaluate the model in cartesian coordinates |
---|
| 128 | |
---|
| 129 | :param x: input q, or [qx, qy] |
---|
| 130 | |
---|
| 131 | :return: scattering function P(q) |
---|
| 132 | |
---|
[5068697] | 133 | """ |
---|
| 134 | |
---|
| 135 | return CTriaxialEllipsoidModel.runXY(self, x) |
---|
| 136 | |
---|
[79ac6f8] | 137 | def evalDistribution(self, x=[]): |
---|
| 138 | """ |
---|
| 139 | Evaluate the model in cartesian coordinates |
---|
| 140 | |
---|
| 141 | :param x: input q[], or [qx[], qy[]] |
---|
| 142 | |
---|
| 143 | :return: scattering function P(q[]) |
---|
| 144 | |
---|
[9bd69098] | 145 | """ |
---|
[f9a1279] | 146 | return CTriaxialEllipsoidModel.evalDistribution(self, x) |
---|
[9bd69098] | 147 | |
---|
[5eb9154] | 148 | def calculate_ER(self): |
---|
[79ac6f8] | 149 | """ |
---|
| 150 | Calculate the effective radius for P(q)*S(q) |
---|
| 151 | |
---|
| 152 | :return: the value of the effective radius |
---|
| 153 | |
---|
[5eb9154] | 154 | """ |
---|
| 155 | return CTriaxialEllipsoidModel.calculate_ER(self) |
---|
| 156 | |
---|
[5068697] | 157 | def set_dispersion(self, parameter, dispersion): |
---|
| 158 | """ |
---|
[79ac6f8] | 159 | Set the dispersion object for a model parameter |
---|
| 160 | |
---|
| 161 | :param parameter: name of the parameter [string] |
---|
| 162 | :param dispersion: dispersion object of type DispersionModel |
---|
| 163 | |
---|
[5068697] | 164 | """ |
---|
| 165 | return CTriaxialEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | # End of file |
---|