1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Provide F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd |
---|
4 | Teubner-Strey function as a BaseComponent model |
---|
5 | |
---|
6 | """ |
---|
7 | |
---|
8 | from sans.models.BaseComponent import BaseComponent |
---|
9 | import math |
---|
10 | |
---|
11 | class TeubnerStreyModel(BaseComponent): |
---|
12 | |
---|
13 | """ |
---|
14 | Class that evaluates the TeubnerStrey model. |
---|
15 | |
---|
16 | F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd |
---|
17 | |
---|
18 | The model has Four parameters: |
---|
19 | scale = scale factor |
---|
20 | c1 = constant |
---|
21 | c2 = constant |
---|
22 | bkd = incoherent background |
---|
23 | """ |
---|
24 | |
---|
25 | def __init__(self): |
---|
26 | """ Initialization """ |
---|
27 | |
---|
28 | # Initialize BaseComponent first, then sphere |
---|
29 | BaseComponent.__init__(self) |
---|
30 | |
---|
31 | ## Name of the model |
---|
32 | self.name = "Teubner Strey" |
---|
33 | self.description="""The TeubnerStrey model. |
---|
34 | F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd |
---|
35 | The model has Four parameters: |
---|
36 | scale = scale factor |
---|
37 | c1 = constant |
---|
38 | c2 = constant |
---|
39 | bkd = incoherent background""" |
---|
40 | ## Define parameters |
---|
41 | self.params = {} |
---|
42 | self.params['c1'] = -30.0 |
---|
43 | self.params['c2'] = 5000.0 |
---|
44 | self.params['scale'] = 0.1 |
---|
45 | self.params['background'] = 0.0 |
---|
46 | |
---|
47 | ## Parameter details [units, min, max] |
---|
48 | self.details = {} |
---|
49 | self.details['c1'] = ['', None, None ] |
---|
50 | self.details['c2'] = ['', None, None ] |
---|
51 | self.details['scale'] = ['', None, None] |
---|
52 | self.details['background'] = ['', None, None] |
---|
53 | |
---|
54 | |
---|
55 | def _TeubnerStrey(self, x): |
---|
56 | """ |
---|
57 | Evaluate F(x) = 1/( scale + c1*(x)^(2)+ c2*(x)^(4)) + bkd |
---|
58 | |
---|
59 | """ |
---|
60 | return 1/( self.params['scale']+ self.params['c1'] * math.pow(x ,2)\ |
---|
61 | + self.params['c2'] * math.pow(x ,4) ) + self.params['background'] |
---|
62 | |
---|
63 | |
---|
64 | def run(self, x = 0.0): |
---|
65 | """ Evaluate the model |
---|
66 | @param x: input q-value (float or [float, float] as [r, theta]) |
---|
67 | @return: (PowerLaw value) |
---|
68 | """ |
---|
69 | if x.__class__.__name__ == 'list': |
---|
70 | return self._TeubnerStrey(x[0]) |
---|
71 | elif x.__class__.__name__ == 'tuple': |
---|
72 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
73 | else: |
---|
74 | return self._TeubnerStrey(x) |
---|
75 | |
---|
76 | def runXY(self, x = 0.0): |
---|
77 | """ Evaluate the model |
---|
78 | @param x: input q-value (float or [float, float] as [qx, qy]) |
---|
79 | @return: PowerLaw value |
---|
80 | """ |
---|
81 | if x.__class__.__name__ == 'list': |
---|
82 | q = math.sqrt(x[0]**2 + x[1]**2) |
---|
83 | return self._TeubnerStrey(q) |
---|
84 | elif x.__class__.__name__ == 'tuple': |
---|
85 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
86 | else: |
---|
87 | return self._TeubnerStrey(x) |
---|
88 | |
---|
89 | def teubnerStreyLengths(self): |
---|
90 | """ |
---|
91 | Calculate the correlation length (L) |
---|
92 | @return L: the correlation distance |
---|
93 | """ |
---|
94 | return math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\ |
---|
95 | +(self.params['c1']/(4*self.params['c2'])),-1/2 ) |
---|
96 | def teubnerStreyDistance(self): |
---|
97 | """ |
---|
98 | Calculate the quasi-periodic repeat distance (D/(2*pi)) |
---|
99 | @return D: quasi-periodic repeat distance |
---|
100 | """ |
---|
101 | return math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\ |
---|
102 | -(self.params['c1']/(4*self.params['c2'])),-1/2 ) |
---|