source: sasview/sansmodels/src/sans/models/TeubnerStreyModel.py @ d7d143b0

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since d7d143b0 was 753552d, checked in by Gervaise Alina <gervyh@…>, 16 years ago

description added

  • Property mode set to 100644
File size: 3.6 KB
Line 
1#!/usr/bin/env python
2"""
3    Provide F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
4    Teubner-Strey function as a BaseComponent model
5   
6"""
7
8from sans.models.BaseComponent import BaseComponent
9import math
10
11class TeubnerStreyModel(BaseComponent):
12   
13    """
14        Class that evaluates  the TeubnerStrey model.
15       
16        F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
17       
18        The model has Four parameters:
19            scale  =  scale factor
20            c1     =  constant
21            c2     =  constant
22            bkd    =  incoherent background
23    """
24       
25    def __init__(self):
26        """ Initialization """
27       
28        # Initialize BaseComponent first, then sphere
29        BaseComponent.__init__(self)
30       
31        ## Name of the model
32        self.name = "Teubner Strey"
33        self.description="""The TeubnerStrey model.
34        F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
35        The model has Four parameters:
36        scale  =  scale factor
37        c1     =  constant
38        c2     =  constant
39        bkd    =  incoherent background"""
40        ## Define parameters
41        self.params = {}
42        self.params['c1']     = -30.0
43        self.params['c2']     = 5000.0
44        self.params['scale']  = 0.1
45        self.params['background']    = 0.0
46
47        ## Parameter details [units, min, max]
48        self.details = {}
49        self.details['c1']    = ['', None, None ]
50        self.details['c2']    = ['', None, None ]
51        self.details['scale'] = ['', None, None]
52        self.details['background']   = ['', None, None]
53   
54               
55    def _TeubnerStrey(self, x):
56        """
57            Evaluate  F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
58           
59        """
60        return 1/( self.params['scale']+ self.params['c1'] * math.pow(x ,2)\
61                + self.params['c2'] * math.pow(x ,4) ) + self.params['background']
62       
63   
64    def run(self, x = 0.0):
65        """ Evaluate the model
66            @param x: input q-value (float or [float, float] as [r, theta])
67            @return: (PowerLaw value)
68        """
69        if x.__class__.__name__ == 'list':
70            return self._TeubnerStrey(x[0])
71        elif x.__class__.__name__ == 'tuple':
72            raise ValueError, "Tuples are not allowed as input to BaseComponent models"
73        else:
74            return self._TeubnerStrey(x)
75   
76    def runXY(self, x = 0.0):
77        """ Evaluate the model
78            @param x: input q-value (float or [float, float] as [qx, qy])
79            @return: PowerLaw value
80        """
81        if x.__class__.__name__ == 'list':
82            q = math.sqrt(x[0]**2 + x[1]**2)
83            return self._TeubnerStrey(q)
84        elif x.__class__.__name__ == 'tuple':
85            raise ValueError, "Tuples are not allowed as input to BaseComponent models"
86        else:
87            return self._TeubnerStrey(x)
88       
89    def teubnerStreyLengths(self):
90        """
91            Calculate the correlation length (L)
92            @return L: the correlation distance
93        """
94        return  math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\
95                            +(self.params['c1']/(4*self.params['c2'])),-1/2 )
96    def teubnerStreyDistance(self):
97        """
98            Calculate the quasi-periodic repeat distance (D/(2*pi))
99            @return D: quasi-periodic repeat distance
100        """
101        return  math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\
102                            -(self.params['c1']/(4*self.params['c2'])),-1/2 )
Note: See TracBrowser for help on using the repository browser.