source: sasview/sansmodels/src/sans/models/TeubnerStreyModel.py @ 06290c8

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 06290c8 was f629e346, checked in by Mathieu Doucet <doucetm@…>, 17 years ago

Updated tests to reflect proper math (took test funcs from Igor). Still need to look into incoherence btw Igor docs and Igor code!

  • Property mode set to 100644
File size: 3.4 KB
RevLine 
[829eee9]1#!/usr/bin/env python
2"""
3    Provide F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
4    Teubner-Strey function as a BaseComponent model
5   
6"""
7
8from sans.models.BaseComponent import BaseComponent
9import math
10
11class TeubnerStreyModel(BaseComponent):
12   
13    """
14        Class that evaluates  the TeubnerStrey model.
15       
16        F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
17       
18        The model has Four parameters:
19            scale  =  scale factor
20            c1     =  constant
21            c2     =  constant
22            bkd    =  incoherent background
23    """
24       
25    def __init__(self):
26        """ Initialization """
27       
28        # Initialize BaseComponent first, then sphere
29        BaseComponent.__init__(self)
30       
31        ## Name of the model
32        self.name = "Teubner Strey"
33
34        ## Define parameters
35        self.params = {}
36        self.params['c1']     = -30.0
37        self.params['c2']     = 5000.0
38        self.params['scale']  = 0.1
[3db3895]39        self.params['background']    = 0.0
[829eee9]40
41        ## Parameter details [units, min, max]
42        self.details = {}
43        self.details['c1']    = ['', None, None ]
44        self.details['c2']    = ['', None, None ]
45        self.details['scale'] = ['', None, None]
[3db3895]46        self.details['background']   = ['', None, None]
[829eee9]47   
48               
49    def _TeubnerStrey(self, x):
50        """
51            Evaluate  F(x) = 1/( scale + c1*(x)^(2)+  c2*(x)^(4)) + bkd
52           
53        """
54        return 1/( self.params['scale']+ self.params['c1'] * math.pow(x ,2)\
[f629e346]55                + self.params['c2'] * math.pow(x ,4) ) + self.params['background']
[829eee9]56       
57   
58    def run(self, x = 0.0):
59        """ Evaluate the model
[3db3895]60            @param x: input q-value (float or [float, float] as [r, theta])
[829eee9]61            @return: (PowerLaw value)
62        """
63        if x.__class__.__name__ == 'list':
64            return self._TeubnerStrey(x[0]*math.cos(x[1]))\
65             *self._TeubnerStrey(x[0]*math.sin(x[1]))
66        elif x.__class__.__name__ == 'tuple':
67            raise ValueError, "Tuples are not allowed as input to BaseComponent models"
68        else:
69            return self._TeubnerStrey(x)
70   
71    def runXY(self, x = 0.0):
72        """ Evaluate the model
[3db3895]73            @param x: input q-value (float or [float, float] as [qx, qy])
[829eee9]74            @return: PowerLaw value
75        """
76        if x.__class__.__name__ == 'list':
77            return self._TeubnerStrey(x[0])*self._TeubnerStrey(x[1])
78        elif x.__class__.__name__ == 'tuple':
79            raise ValueError, "Tuples are not allowed as input to BaseComponent models"
80        else:
81            return self._TeubnerStrey(x)
82       
[3db3895]83    def teubnerStreyLengths(self):
[829eee9]84        """
85            Calculate the correlation length (L)
86            @return L: the correlation distance
87        """
[3db3895]88        return  math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\
[829eee9]89                            +(self.params['c1']/(4*self.params['c2'])),-1/2 )
[3db3895]90    def teubnerStreyDistance(self):
[829eee9]91        """
92            Calculate the quasi-periodic repeat distance (D/(2*pi))
93            @return D: quasi-periodic repeat distance
94        """
[3db3895]95        return  math.pow( 1/2 * math.pow( (self.params['scale']/self.params['c2']), 1/2 )\
[829eee9]96                            -(self.params['c1']/(4*self.params['c2'])),-1/2 )
Note: See TracBrowser for help on using the repository browser.