1 | |
---|
2 | from sans.models.BaseComponent import BaseComponent |
---|
3 | from sans.models.SphereSLDModel import SphereSLDModel |
---|
4 | from copy import deepcopy |
---|
5 | from math import floor |
---|
6 | #from scipy.special import erf |
---|
7 | func_list = {'Erf(|nu|*z)':0, 'RPower(z^|nu|)':1, 'LPower(z^|nu|)':2, \ |
---|
8 | 'RExp(-|nu|*z)':3, 'LExp(-|nu|*z)':4} |
---|
9 | max_nshells = 10 |
---|
10 | class SphericalSLDModel(BaseComponent): |
---|
11 | """ |
---|
12 | This multi-model is based on Parratt formalism and provides the capability |
---|
13 | of changing the number of layers between 0 and 10. |
---|
14 | """ |
---|
15 | def __init__(self, multfactor=1): |
---|
16 | BaseComponent.__init__(self) |
---|
17 | """ |
---|
18 | :param multfactor: number of layers in the model, |
---|
19 | assumes 0<= n_shells <=10. |
---|
20 | """ |
---|
21 | |
---|
22 | ## Setting model name model description |
---|
23 | self.description="" |
---|
24 | model = SphereSLDModel() |
---|
25 | self.model = model |
---|
26 | self.name = "SphericalSLDModel" |
---|
27 | self.description=model.description |
---|
28 | self.n_shells = multfactor |
---|
29 | ## Define parameters |
---|
30 | self.params = {} |
---|
31 | |
---|
32 | ## Parameter details [units, min, max] |
---|
33 | self.details = {} |
---|
34 | |
---|
35 | # non-fittable parameters |
---|
36 | self.non_fittable = model.non_fittable |
---|
37 | |
---|
38 | # list of function in order of the function number |
---|
39 | self.fun_list = self._get_func_list() |
---|
40 | ## dispersion |
---|
41 | self._set_dispersion() |
---|
42 | ## Define parameters |
---|
43 | self._set_params() |
---|
44 | |
---|
45 | ## Parameter details [units, min, max] |
---|
46 | self._set_details() |
---|
47 | |
---|
48 | #list of parameter that can be fitted |
---|
49 | self._set_fixed_params() |
---|
50 | self.model.params['n_shells'] = self.n_shells |
---|
51 | |
---|
52 | ## functional multiplicity info of the model |
---|
53 | # [int(maximum no. of functionality),"str(Titl), |
---|
54 | # [str(name of function0),...], [str(x-asix name of sld),...]] |
---|
55 | self.multiplicity_info = [max_nshells,"No. of Shells:",[],['Radius']] |
---|
56 | |
---|
57 | |
---|
58 | def _clone(self, obj): |
---|
59 | """ |
---|
60 | Internal utility function to copy the internal |
---|
61 | data members to a fresh copy. |
---|
62 | """ |
---|
63 | obj.params = deepcopy(self.params) |
---|
64 | obj.non_fittable = deepcopy(self.non_fittable) |
---|
65 | obj.description = deepcopy(self.description) |
---|
66 | obj.details = deepcopy(self.details) |
---|
67 | obj.dispersion = deepcopy(self.dispersion) |
---|
68 | obj.model = self.model.clone() |
---|
69 | |
---|
70 | return obj |
---|
71 | |
---|
72 | |
---|
73 | def _set_dispersion(self): |
---|
74 | """ |
---|
75 | model dispersions |
---|
76 | """ |
---|
77 | ##set dispersion from model |
---|
78 | for name , value in self.model.dispersion.iteritems(): |
---|
79 | |
---|
80 | nshell = -1 |
---|
81 | if name.split('_')[0] == 'thick': |
---|
82 | while nshell<1: |
---|
83 | nshell += 1 |
---|
84 | if name.split('_')[1] == 'inter%s' % str(nshell): |
---|
85 | self.dispersion[name]= value |
---|
86 | else: |
---|
87 | continue |
---|
88 | else: |
---|
89 | self.dispersion[name]= value |
---|
90 | |
---|
91 | def _set_params(self): |
---|
92 | """ |
---|
93 | Concatenate the parameters of the model to create |
---|
94 | this model parameters |
---|
95 | """ |
---|
96 | # rearrange the parameters for the given # of shells |
---|
97 | for name , value in self.model.params.iteritems(): |
---|
98 | n = 0 |
---|
99 | pos = len(name.split('_'))-1 |
---|
100 | first_name = name.split('_')[0] |
---|
101 | last_name = name.split('_')[pos] |
---|
102 | if first_name == 'npts': |
---|
103 | self.params[name]=value |
---|
104 | continue |
---|
105 | elif first_name == 'func': |
---|
106 | n= -1 |
---|
107 | while n<self.n_shells: |
---|
108 | n += 1 |
---|
109 | if last_name == 'inter%s' % str(n): |
---|
110 | self.params[name]=value |
---|
111 | continue |
---|
112 | elif last_name[0:5] == 'inter': |
---|
113 | n= -1 |
---|
114 | while n<self.n_shells: |
---|
115 | n += 1 |
---|
116 | if last_name == 'inter%s' % str(n): |
---|
117 | self.params[name]= value |
---|
118 | continue |
---|
119 | elif last_name[0:4] == 'flat': |
---|
120 | while n<self.n_shells: |
---|
121 | n += 1 |
---|
122 | if last_name == 'flat%s' % str(n): |
---|
123 | self.params[name]= value |
---|
124 | continue |
---|
125 | elif name == 'n_shells': |
---|
126 | continue |
---|
127 | else: |
---|
128 | self.params[name]= value |
---|
129 | |
---|
130 | self.model.params['n_shells'] = self.n_shells |
---|
131 | |
---|
132 | # set constrained values for the original model params |
---|
133 | self._set_xtra_model_param() |
---|
134 | |
---|
135 | def _set_details(self): |
---|
136 | """ |
---|
137 | Concatenate details of the original model to create |
---|
138 | this model details |
---|
139 | """ |
---|
140 | for name ,detail in self.model.details.iteritems(): |
---|
141 | if name in self.params.iterkeys(): |
---|
142 | self.details[name]= detail |
---|
143 | |
---|
144 | |
---|
145 | def _set_xtra_model_param(self): |
---|
146 | """ |
---|
147 | Set params of original model that are hidden from this model |
---|
148 | """ |
---|
149 | # look for the model parameters that are not in param list |
---|
150 | for key in self.model.params.iterkeys(): |
---|
151 | if key not in self.params.keys(): |
---|
152 | if key.split('_')[0] == 'thick': |
---|
153 | self.model.setParam(key, 0) |
---|
154 | continue |
---|
155 | if key.split('_')[0] == 'func': |
---|
156 | self.model.setParam(key, 0) |
---|
157 | continue |
---|
158 | |
---|
159 | for nshell in range(self.n_shells,max_nshells): |
---|
160 | if key.split('_')[1] == 'flat%s' % str(nshell+1): |
---|
161 | try: |
---|
162 | if key.split('_')[0] == 'sld': |
---|
163 | value = self.model.params['sld_solv'] |
---|
164 | self.model.setParam(key, value) |
---|
165 | except: pass |
---|
166 | |
---|
167 | def _get_func_list(self): |
---|
168 | """ |
---|
169 | Get the list of functions in each layer (shell) |
---|
170 | """ |
---|
171 | #func_list = {} |
---|
172 | return func_list |
---|
173 | |
---|
174 | def getProfile(self): |
---|
175 | """ |
---|
176 | Get SLD profile |
---|
177 | |
---|
178 | : return: (z, beta) where z is a list of depth of the transition points |
---|
179 | beta is a list of the corresponding SLD values |
---|
180 | """ |
---|
181 | # max_pts for each layers |
---|
182 | n_sub = self.params['npts_inter'] |
---|
183 | z = [] |
---|
184 | beta = [] |
---|
185 | z0 = 0 |
---|
186 | sub_range = floor(n_sub/2.0) |
---|
187 | # two sld points for core |
---|
188 | z.append(0) |
---|
189 | beta.append(self.params['sld_core0']) |
---|
190 | z.append(self.params['rad_core0']) |
---|
191 | beta.append(self.params['sld_core0']) |
---|
192 | z0 += self.params['rad_core0'] |
---|
193 | # for layers from the core |
---|
194 | for n in range(1,self.n_shells+2): |
---|
195 | i = n |
---|
196 | # j=0 for interface, j=1 for flat layer |
---|
197 | for j in range(0,2): |
---|
198 | # interation for sub-layers |
---|
199 | for n_s in range(0,n_sub+1): |
---|
200 | if j==1: |
---|
201 | if i==self.n_shells+1: |
---|
202 | break |
---|
203 | # shift half sub thickness for the first point |
---|
204 | z0 -= dz#/2.0 |
---|
205 | z.append(z0) |
---|
206 | #z0 -= dz/2.0 |
---|
207 | z0 += self.params['thick_flat%s'% str(i)] |
---|
208 | |
---|
209 | sld_i = self.params['sld_flat%s'% str(i)] |
---|
210 | beta.append(self.params['sld_flat%s'% str(i)]) |
---|
211 | dz = 0 |
---|
212 | else: |
---|
213 | dz = self.params['thick_inter%s'% str(i-1)]/n_sub |
---|
214 | nu = self.params['nu_inter%s'% str(i-1)] |
---|
215 | # decide which sld is which, sld_r or sld_l |
---|
216 | if i == 1: |
---|
217 | sld_l = self.params['sld_core0'] |
---|
218 | else: |
---|
219 | sld_l = self.params['sld_flat%s'% str(i-1)] |
---|
220 | if i == self.n_shells+1: |
---|
221 | sld_r = self.params['sld_solv'] |
---|
222 | else: |
---|
223 | sld_r = self.params['sld_flat%s'% str(i)] |
---|
224 | # get function type |
---|
225 | func_idx = self.params['func_inter%s'% str(i-1)] |
---|
226 | # calculate the sld |
---|
227 | sld_i = self._get_sld(func_idx, n_sub, n_s, nu, |
---|
228 | sld_l, sld_r) |
---|
229 | # append to the list |
---|
230 | z.append(z0) |
---|
231 | beta.append(sld_i) |
---|
232 | z0 += dz |
---|
233 | if j==1: break |
---|
234 | # put sld of solvent |
---|
235 | z.append(z0) |
---|
236 | beta.append(self.params['sld_solv']) |
---|
237 | z_ext = z0/5.0 |
---|
238 | z.append(z0+z_ext) |
---|
239 | beta.append(self.params['sld_solv']) |
---|
240 | # return sld profile (r, beta) |
---|
241 | return z, beta |
---|
242 | |
---|
243 | def _get_sld(self, func_idx, n_sub, n_s, nu, sld_l, sld_r): |
---|
244 | """ |
---|
245 | Get the function asked to build sld profile |
---|
246 | : param func_idx: func type number |
---|
247 | : param n_sub: total number of sub_layer |
---|
248 | : param n_s: index of sub_layer |
---|
249 | : param nu: coefficient of the function |
---|
250 | : param sld_l: sld on the left side |
---|
251 | : param sld_r: sld on the right side |
---|
252 | : return: sld value, float |
---|
253 | """ |
---|
254 | from sans.models.SLDCalFunc import SLDCalFunc |
---|
255 | # sld_cal init |
---|
256 | sld_cal = SLDCalFunc() |
---|
257 | # set params |
---|
258 | sld_cal.setParam('fun_type',func_idx) |
---|
259 | sld_cal.setParam('npts_inter',n_sub) |
---|
260 | sld_cal.setParam('shell_num',n_s) |
---|
261 | sld_cal.setParam('nu_inter',nu) |
---|
262 | sld_cal.setParam('sld_left',sld_l) |
---|
263 | sld_cal.setParam('sld_right',sld_r) |
---|
264 | # return sld value |
---|
265 | return sld_cal.run() |
---|
266 | |
---|
267 | def setParam(self, name, value): |
---|
268 | """ |
---|
269 | Set the value of a model parameter |
---|
270 | |
---|
271 | : param name: name of the parameter |
---|
272 | : param value: value of the parameter |
---|
273 | """ |
---|
274 | # set param to new model |
---|
275 | self._setParamHelper( name, value) |
---|
276 | |
---|
277 | ## setParam to model |
---|
278 | if name=='sld_solv': |
---|
279 | # the sld_*** model.params not in params must set to |
---|
280 | # value of sld_solv |
---|
281 | for key in self.model.params.iterkeys(): |
---|
282 | if key not in self.params.keys()and key.split('_')[0] == 'sld': |
---|
283 | self.model.setParam(key, value) |
---|
284 | |
---|
285 | self.model.setParam( name, value) |
---|
286 | |
---|
287 | def _setParamHelper(self, name, value): |
---|
288 | """ |
---|
289 | Helper function to setParam |
---|
290 | """ |
---|
291 | toks = name.split('.') |
---|
292 | if len(toks)==2: |
---|
293 | for item in self.dispersion.keys(): |
---|
294 | if item.lower()==toks[0].lower(): |
---|
295 | for par in self.dispersion[item]: |
---|
296 | if par.lower() == toks[1].lower(): |
---|
297 | self.dispersion[item][par] = value |
---|
298 | return |
---|
299 | # Look for standard parameter |
---|
300 | for item in self.params.keys(): |
---|
301 | if item.lower()==name.lower(): |
---|
302 | self.params[item] = value |
---|
303 | return |
---|
304 | |
---|
305 | raise ValueError, "Model does not contain parameter %s" % name |
---|
306 | |
---|
307 | |
---|
308 | def _set_fixed_params(self): |
---|
309 | """ |
---|
310 | Fill the self.fixed list with the model fixed list |
---|
311 | """ |
---|
312 | for item in self.model.fixed: |
---|
313 | if item.split('.')[0] in self.params.keys(): |
---|
314 | self.fixed.append(item) |
---|
315 | |
---|
316 | self.fixed.sort() |
---|
317 | pass |
---|
318 | |
---|
319 | def run(self, x = 0.0): |
---|
320 | """ |
---|
321 | Evaluate the model |
---|
322 | |
---|
323 | :param x: input q, or [q,phi] |
---|
324 | |
---|
325 | :return: scattering function P(q) |
---|
326 | |
---|
327 | """ |
---|
328 | |
---|
329 | return self.model.run(x) |
---|
330 | |
---|
331 | def runXY(self, x = 0.0): |
---|
332 | """ |
---|
333 | Evaluate the model |
---|
334 | |
---|
335 | : param x: input q-value (float or [float, float] as [qx, qy]) |
---|
336 | : return: scattering function value |
---|
337 | """ |
---|
338 | |
---|
339 | return self.model.runXY(x) |
---|
340 | |
---|
341 | ## Now (May27,10) directly uses the model eval function |
---|
342 | ## instead of the for-loop in Base Component. |
---|
343 | def evalDistribution(self, x = []): |
---|
344 | """ |
---|
345 | Evaluate the model in cartesian coordinates |
---|
346 | |
---|
347 | : param x: input q[], or [qx[], qy[]] |
---|
348 | : return: scattering function P(q[]) |
---|
349 | """ |
---|
350 | # set effective radius and scaling factor before run |
---|
351 | return self.model.evalDistribution(x) |
---|
352 | def calculate_ER(self): |
---|
353 | """ |
---|
354 | """ |
---|
355 | return self.model.calculate_ER() |
---|
356 | def set_dispersion(self, parameter, dispersion): |
---|
357 | """ |
---|
358 | Set the dispersion object for a model parameter |
---|
359 | |
---|
360 | : param parameter: name of the parameter [string] |
---|
361 | :dispersion: dispersion object of type DispersionModel |
---|
362 | """ |
---|
363 | value= None |
---|
364 | try: |
---|
365 | if parameter in self.model.dispersion.keys(): |
---|
366 | value= self.model.set_dispersion(parameter, dispersion) |
---|
367 | self._set_dispersion() |
---|
368 | return value |
---|
369 | except: |
---|
370 | raise |
---|