source: sasview/sansmodels/src/sans/models/Schulz.py @ fe9c19b4

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since fe9c19b4 was fe9c19b4, checked in by Gervaise Alina <gervyh@…>, 15 years ago

implement set and get state

  • Property mode set to 100644
File size: 4.2 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\schulz.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CSchulz
26import copy   
27   
28class Schulz(CSchulz, BaseComponent):
29    """ Class that evaluates a Schulz model.
30        This file was auto-generated from ..\c_extensions\schulz.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         sigma           = 1.0
36         center          = 0.0
37
38    """
39       
40    def __init__(self):
41        """ Initialization """
42       
43        # Initialize BaseComponent first, then sphere
44        BaseComponent.__init__(self)
45        CSchulz.__init__(self)
46       
47        ## Name of the model
48        self.name = "Schulz"
49        ## Model description
50        self.description =""" f(x)=scale * math.pow(z+1, z+1)*math.pow((R), z)*
51                math.exp(-R*(z+1))/(center*gamma(z+1)
52                z= math.pow[(1/(sigma/center),2]-1"""
53       
54        ## Parameter details [units, min, max]
55        self.details = {}
56        self.details['scale'] = ['', None, None]
57        self.details['sigma'] = ['', None, None]
58        self.details['center'] = ['', None, None]
59
60        ## fittable parameters
61        self.fixed=[]
62       
63        ## parameters with orientation
64        self.orientation_params =[]
65   
66    def clone(self):
67        """ Return a identical copy of self """
68        return self._clone(Schulz())   
69       
70    def __getstate__(self):
71        """ return object state for pickling and copying """
72        print "__dict__",self.__dict__
73        #self.__dict__['params'] = self.params
74        #self.__dict__['dispersion'] = self.dispersion
75        #self.__dict__['log'] = self.log
76        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
77       
78        return self.__dict__, model_state
79       
80    def __setstate__(self, state):
81        """ create object from pickled state """
82       
83        self.__dict__, model_state = state
84        self.params = model_state['params']
85        self.dispersion = model_state['dispersion']
86        self.log = model_state['log']
87       
88   
89    def run(self, x = 0.0):
90        """ Evaluate the model
91            @param x: input q, or [q,phi]
92            @return: scattering function P(q)
93        """
94       
95        return CSchulz.run(self, x)
96   
97    def runXY(self, x = 0.0):
98        """ Evaluate the model in cartesian coordinates
99            @param x: input q, or [qx, qy]
100            @return: scattering function P(q)
101        """
102       
103        return CSchulz.runXY(self, x)
104       
105    def evalDistribition(self, x = []):
106        """ Evaluate the model in cartesian coordinates
107            @param x: input q[], or [qx[], qy[]]
108            @return: scattering function P(q[])
109        """
110        return CSchulz.evalDistribition(self, x)
111       
112    def calculate_ER(self):
113        """ Calculate the effective radius for P(q)*S(q)
114            @return: the value of the effective radius
115        """       
116        return CSchulz.calculate_ER(self)
117       
118    def set_dispersion(self, parameter, dispersion):
119        """
120            Set the dispersion object for a model parameter
121            @param parameter: name of the parameter [string]
122            @dispersion: dispersion object of type DispersionModel
123        """
124        return CSchulz.set_dispersion(self, parameter, dispersion.cdisp)
125       
126   
127# End of file
Note: See TracBrowser for help on using the repository browser.