source: sasview/sansmodels/src/sans/models/SCCrystalModel.py @ 94a3f8f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 94a3f8f was 94a3f8f, checked in by Jae Cho <jhjcho@…>, 14 years ago

added simple cubic paracrystal 1d and anisotropic model; still needs more test and doc.s

  • Property mode set to 100644
File size: 5.8 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\sc.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CSCCrystalModel
29import copy   
30   
31class SCCrystalModel(CSCCrystalModel, BaseComponent):
32    """
33    Class that evaluates a SCCrystalModel model.
34    This file was auto-generated from ..\c_extensions\sc.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         dnn             = 220.0 [A]
40         d_factor        = 0.06
41         radius          = 40.0 [A]
42         sldSph          = 3e-006 [1/A^(2)]
43         sldSolv         = 6.3e-006 [1/A^(2)]
44         background      = 0.0 [1/cm]
45         theta           = 0.0 [rad]
46         phi             = 0.0 [rad]
47         psi             = 0.0 [rad]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CSCCrystalModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "SCCrystalModel"
60        ## Model description
61        self.description ="""P(q)=(scale/Vp)*V_lattice*P(q)*Z(q)+bkg where scale is the volume
62                fraction of sphere,
63                Vp = volume of the primary particle,
64                V_lattice = volume correction for
65                for the crystal structure,
66                P(q)= form factor of the sphere (normalized),
67                Z(q)= paracrystalline structure factor
68                for a simple cubic structure.
69                Parameters;
70                scale: volume fraction of spheres
71                bkg:background, R: radius of sphere
72                dnn: Nearest neighbor distance
73                d_factor: Paracrystal distortion factor
74                radius: radius of the spheres
75                sldSph: SLD of the sphere
76                sldSolv: SLD of the solvent
77                """
78       
79        ## Parameter details [units, min, max]
80        self.details = {}
81        self.details['scale'] = ['', None, None]
82        self.details['dnn'] = ['[A]', None, None]
83        self.details['d_factor'] = ['', None, None]
84        self.details['radius'] = ['[A]', None, None]
85        self.details['sldSph'] = ['[1/A^(2)]', None, None]
86        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
87        self.details['background'] = ['[1/cm]', None, None]
88        self.details['theta'] = ['[rad]', None, None]
89        self.details['phi'] = ['[rad]', None, None]
90        self.details['psi'] = ['[rad]', None, None]
91
92        ## fittable parameters
93        self.fixed=['radius.width', 'phi.width', 'psi.width', 'theta.width']
94       
95        ## non-fittable parameters
96        self.non_fittable=[]
97       
98        ## parameters with orientation
99        self.orientation_params =['phi', 'psi', 'theta', 'phi.width', 'psi.width', 'theta.width']
100   
101    def clone(self):
102        """ Return a identical copy of self """
103        return self._clone(SCCrystalModel())   
104       
105    def __getstate__(self):
106        """
107        return object state for pickling and copying
108        """
109        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
110       
111        return self.__dict__, model_state
112       
113    def __setstate__(self, state):
114        """
115        create object from pickled state
116       
117        :param state: the state of the current model
118       
119        """
120       
121        self.__dict__, model_state = state
122        self.params = model_state['params']
123        self.dispersion = model_state['dispersion']
124        self.log = model_state['log']
125       
126   
127    def run(self, x=0.0):
128        """
129        Evaluate the model
130       
131        :param x: input q, or [q,phi]
132       
133        :return: scattering function P(q)
134       
135        """
136       
137        return CSCCrystalModel.run(self, x)
138   
139    def runXY(self, x=0.0):
140        """
141        Evaluate the model in cartesian coordinates
142       
143        :param x: input q, or [qx, qy]
144       
145        :return: scattering function P(q)
146       
147        """
148       
149        return CSCCrystalModel.runXY(self, x)
150       
151    def evalDistribution(self, x=[]):
152        """
153        Evaluate the model in cartesian coordinates
154       
155        :param x: input q[], or [qx[], qy[]]
156       
157        :return: scattering function P(q[])
158       
159        """
160        return CSCCrystalModel.evalDistribution(self, x)
161       
162    def calculate_ER(self):
163        """
164        Calculate the effective radius for P(q)*S(q)
165       
166        :return: the value of the effective radius
167       
168        """       
169        return CSCCrystalModel.calculate_ER(self)
170       
171    def set_dispersion(self, parameter, dispersion):
172        """
173        Set the dispersion object for a model parameter
174       
175        :param parameter: name of the parameter [string]
176        :param dispersion: dispersion object of type DispersionModel
177       
178        """
179        return CSCCrystalModel.set_dispersion(self, parameter, dispersion.cdisp)
180       
181   
182# End of file
Note: See TracBrowser for help on using the repository browser.