[8f20419d] | 1 | |
---|
| 2 | from sans.models.BaseComponent import BaseComponent |
---|
| 3 | from sans.models.ReflModel import ReflModel |
---|
| 4 | from copy import deepcopy |
---|
| 5 | from math import floor |
---|
| 6 | from scipy.special import erf |
---|
| 7 | func_list = {'Erf':0, 'Linear':1, 'RParabolic':2, \ |
---|
| 8 | 'LParabola':3, 'RCubic':4, 'LCubic':5} |
---|
| 9 | max_nshells = 10 |
---|
| 10 | class ReflectivityModel(BaseComponent): |
---|
| 11 | """ |
---|
| 12 | This multi-model is based on Parratt formalism and provides the capability |
---|
| 13 | of changing the number of layers between 0 and 10. |
---|
| 14 | """ |
---|
| 15 | def __init__(self, multfactor=1): |
---|
| 16 | BaseComponent.__init__(self) |
---|
| 17 | """ |
---|
| 18 | :param multfactor: number of layers in the model, assumes 0<= n_shells <=10. |
---|
| 19 | """ |
---|
| 20 | |
---|
| 21 | ## Setting model name model description |
---|
| 22 | self.description="" |
---|
| 23 | model = ReflModel() |
---|
| 24 | self.model = model |
---|
| 25 | self.name = "ReflectivityModel" |
---|
| 26 | self.description=model.description |
---|
| 27 | self.n_layers = multfactor |
---|
| 28 | ## Define parameters |
---|
| 29 | self.params = {} |
---|
| 30 | |
---|
| 31 | ## Parameter details [units, min, max] |
---|
| 32 | self.details = {} |
---|
| 33 | |
---|
| 34 | # non-fittable parameters |
---|
| 35 | self.non_fittable = model.non_fittable |
---|
| 36 | |
---|
| 37 | # list of function in order of the function number |
---|
| 38 | self.fun_list = self._get_func_list() |
---|
| 39 | ## dispersion |
---|
| 40 | self._set_dispersion() |
---|
| 41 | ## Define parameters |
---|
| 42 | self._set_params() |
---|
| 43 | |
---|
| 44 | ## Parameter details [units, min, max] |
---|
| 45 | self._set_details() |
---|
| 46 | |
---|
| 47 | #list of parameter that can be fitted |
---|
| 48 | self._set_fixed_params() |
---|
| 49 | self.model.params['n_layers'] = self.n_layers |
---|
| 50 | |
---|
| 51 | ## functional multiplicity info of the model |
---|
| 52 | # [int(maximum no. of functionality),"str(Titl), |
---|
| 53 | # [str(name of function0),...], [str(x-asix name of sld),...]] |
---|
| 54 | self.multiplicity_info = [max_nshells,"No. of Layers:",[],['Depth']] |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | def _clone(self, obj): |
---|
| 58 | """ |
---|
| 59 | Internal utility function to copy the internal |
---|
| 60 | data members to a fresh copy. |
---|
| 61 | """ |
---|
| 62 | obj.params = deepcopy(self.params) |
---|
| 63 | obj.non_fittable = deepcopy(self.non_fittable) |
---|
| 64 | obj.description = deepcopy(self.description) |
---|
| 65 | obj.details = deepcopy(self.details) |
---|
| 66 | obj.dispersion = deepcopy(self.dispersion) |
---|
| 67 | obj.model = self.model.clone() |
---|
| 68 | |
---|
| 69 | return obj |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | def _set_dispersion(self): |
---|
| 73 | """ |
---|
| 74 | model dispersions |
---|
| 75 | """ |
---|
| 76 | ##set dispersion from model |
---|
| 77 | self.dispersion = {} |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | def _set_params(self): |
---|
| 81 | """ |
---|
| 82 | Concatenate the parameters of the model to create |
---|
| 83 | this model parameters |
---|
| 84 | """ |
---|
| 85 | # rearrange the parameters for the given # of shells |
---|
| 86 | for name , value in self.model.params.iteritems(): |
---|
| 87 | n = 0 |
---|
| 88 | pos = len(name.split('_'))-1 |
---|
| 89 | if name.split('_')[0] == 'sldIM': |
---|
| 90 | continue |
---|
| 91 | elif name.split('_')[0] == 'func': |
---|
| 92 | n= -1 |
---|
| 93 | while n<self.n_layers: |
---|
| 94 | n += 1 |
---|
| 95 | if name.split('_')[pos] == 'inter%s' % str(n): |
---|
| 96 | self.params[name]=value |
---|
| 97 | continue |
---|
| 98 | #continue |
---|
| 99 | elif name.split('_')[pos][0:5] == 'inter': |
---|
| 100 | n= -1 |
---|
| 101 | while n<self.n_layers: |
---|
| 102 | n += 1 |
---|
| 103 | if name.split('_')[pos] == 'inter%s' % str(n): |
---|
| 104 | self.params[name]= value |
---|
| 105 | continue |
---|
| 106 | elif name.split('_')[pos][0:4] == 'flat': |
---|
| 107 | while n<self.n_layers: |
---|
| 108 | n += 1 |
---|
| 109 | if name.split('_')[pos] == 'flat%s' % str(n): |
---|
| 110 | self.params[name]= value |
---|
| 111 | continue |
---|
| 112 | elif name == 'n_layers': |
---|
| 113 | continue |
---|
| 114 | else: |
---|
| 115 | self.params[name]= value |
---|
| 116 | |
---|
| 117 | self.model.params['n_layers'] = self.n_layers |
---|
| 118 | |
---|
| 119 | # set constrained values for the original model params |
---|
| 120 | self._set_xtra_model_param() |
---|
| 121 | |
---|
| 122 | def _set_details(self): |
---|
| 123 | """ |
---|
| 124 | Concatenate details of the original model to create |
---|
| 125 | this model details |
---|
| 126 | """ |
---|
| 127 | for name ,detail in self.model.details.iteritems(): |
---|
| 128 | if name in self.params.iterkeys(): |
---|
| 129 | self.details[name]= detail |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | def _set_xtra_model_param(self): |
---|
| 133 | """ |
---|
| 134 | Set params of original model that are hidden from this model |
---|
| 135 | """ |
---|
| 136 | # look for the model parameters that are not in param list |
---|
| 137 | for key in self.model.params.iterkeys(): |
---|
| 138 | if key not in self.params.keys(): |
---|
| 139 | if key.split('_')[0] == 'thick': |
---|
| 140 | self.model.setParam(key, 0) |
---|
| 141 | continue |
---|
| 142 | if key.split('_')[0] == 'func': |
---|
| 143 | self.model.setParam(key, 0) |
---|
| 144 | continue |
---|
| 145 | for nshell in range(self.n_layers,max_nshells): |
---|
| 146 | if key.split('_')[1] == 'flat%s' % str(nshell+1): |
---|
| 147 | try: |
---|
| 148 | if key.split('_')[0] == 'sld': |
---|
| 149 | value = self.model.params['sld_medium'] |
---|
| 150 | elif key.split('_')[0] == 'sldIM': |
---|
| 151 | value = self.model.params['sldIM_medium'] |
---|
| 152 | self.model.setParam(key, value) |
---|
| 153 | except: pass |
---|
| 154 | |
---|
| 155 | def _get_func_list(self): |
---|
| 156 | """ |
---|
| 157 | Get the list of functions in each layer (shell) |
---|
| 158 | """ |
---|
| 159 | #func_list = {} |
---|
| 160 | return func_list |
---|
| 161 | |
---|
| 162 | def getProfile(self): |
---|
| 163 | """ |
---|
| 164 | Get SLD profile |
---|
| 165 | |
---|
| 166 | : return: (z, beta) where z is a list of depth of the transition points |
---|
| 167 | beta is a list of the corresponding SLD values |
---|
| 168 | """ |
---|
| 169 | # max_pts for each layers |
---|
| 170 | n_sub = 21 |
---|
| 171 | z = [] |
---|
| 172 | beta = [] |
---|
| 173 | sub_range = floor(n_sub/2.0) |
---|
| 174 | z.append(0) |
---|
| 175 | beta.append(self.params['sld_sub0']) |
---|
| 176 | |
---|
| 177 | z0 = 0 |
---|
| 178 | # for layers from the top |
---|
| 179 | for n in range(1,self.n_layers+2): |
---|
| 180 | i = n |
---|
| 181 | |
---|
| 182 | for j in range(0,2): |
---|
| 183 | for n_s in range(-sub_range,sub_range+1): |
---|
| 184 | if j==1: |
---|
| 185 | if i==self.n_layers+1: |
---|
| 186 | break |
---|
| 187 | # shift half sub thickness for the first point |
---|
| 188 | z0 += dz/2.0 |
---|
| 189 | z.append(z0) |
---|
| 190 | #z0 -= dz/2.0 |
---|
| 191 | z0 += self.params['thick_flat%s'% str(i)] |
---|
| 192 | |
---|
| 193 | sld_i = self.params['sld_flat%s'% str(i)] |
---|
| 194 | beta.append(self.params['sld_flat%s'% str(i)]) |
---|
| 195 | else: |
---|
| 196 | |
---|
| 197 | dz = self.params['thick_inter%s'% str(i-1)]/n_sub |
---|
| 198 | |
---|
| 199 | if n_s == -sub_range: |
---|
| 200 | # shift half sub thickness for the first point |
---|
| 201 | z0 -= dz/2.0 |
---|
| 202 | #exec "dz = self.params['thick_inter[%s-1]'% str(i)]/9" |
---|
| 203 | #print "%d = %g \n"% (i,self.params['thick_inter3']) |
---|
| 204 | z0 += dz |
---|
| 205 | |
---|
| 206 | if i == 1: |
---|
| 207 | sld_l = self.params['sld_sub0'] |
---|
| 208 | else: |
---|
| 209 | sld_l = self.params['sld_flat%s'% str(i-1)] |
---|
| 210 | if i == self.n_layers+1: |
---|
| 211 | sld_r = self.params['sld_medium'] |
---|
| 212 | else: |
---|
| 213 | sld_r = self.params['sld_flat%s'% str(i)] |
---|
| 214 | func_idx = self.params['func_inter%s'% str(i-1)] |
---|
| 215 | func = self._get_func(n_s, n_sub, func_idx) |
---|
| 216 | if sld_r>sld_l: |
---|
| 217 | sld_i = (sld_r-sld_l)*func+sld_l |
---|
| 218 | elif sld_r<sld_l: |
---|
| 219 | sld_i = (sld_l-sld_r)*(1-func)+sld_r |
---|
| 220 | else: |
---|
| 221 | sld_i = sld_r |
---|
| 222 | z.append(z0) |
---|
| 223 | beta.append(sld_i) |
---|
| 224 | if j==1: break |
---|
| 225 | # put substrate and superstrate profile |
---|
| 226 | # shift half sub thickness for the first point |
---|
| 227 | z0 += dz/2.0 |
---|
| 228 | z.append(z0) |
---|
| 229 | beta.append(self.params['sld_medium']) |
---|
| 230 | z_ext = z0/6.0 |
---|
| 231 | |
---|
| 232 | # put the extra points for the substrate |
---|
| 233 | # and superstrate |
---|
| 234 | z.append(z0+z_ext) |
---|
| 235 | beta.append(self.params['sld_medium']) |
---|
| 236 | z.insert(0,-z_ext) |
---|
| 237 | beta.insert(0,self.params['sld_sub0']) |
---|
| 238 | z = [z0 - x for x in z] |
---|
| 239 | z.reverse() |
---|
| 240 | beta.reverse() |
---|
| 241 | return z, beta |
---|
| 242 | |
---|
| 243 | def _get_func(self, index, n_sub, func_idx): |
---|
| 244 | """ |
---|
| 245 | Get the function asked to buil sld profile |
---|
| 246 | : param index: index of sub_layer |
---|
| 247 | : param n_sub: total number of sub_layer |
---|
| 248 | : param func_idx: an integer to identify a function |
---|
| 249 | |
---|
| 250 | : return out: the output from the function, float |
---|
| 251 | """ |
---|
| 252 | # cal bin_size |
---|
| 253 | bin_size = 1.0/n_sub |
---|
| 254 | # erf |
---|
| 255 | if func_idx == 0: |
---|
| 256 | out = erf(index/(n_sub/5.0))/2.0 + 0.5 |
---|
| 257 | return out |
---|
| 258 | else: |
---|
| 259 | index += 0.5 |
---|
| 260 | # linear |
---|
| 261 | if func_idx == 1: |
---|
| 262 | out = ((index + floor(n_sub/2.0))*bin_size) |
---|
| 263 | # r_parabolic |
---|
| 264 | elif func_idx == 2: |
---|
| 265 | out = ((index + floor(n_sub/2.0))*bin_size)* \ |
---|
| 266 | ((index + floor(n_sub/2.0))*bin_size) |
---|
| 267 | # l_parabolic |
---|
| 268 | elif func_idx == 3: |
---|
| 269 | out = 1.0-(((index + floor(n_sub/2.0))*bin_size) - 1.0) *\ |
---|
| 270 | (((index + floor(n_sub/2.0))*bin_size) - 1.0) |
---|
| 271 | # r_cubic |
---|
| 272 | elif func_idx == 4: |
---|
| 273 | out = ((index + floor(n_sub/2.0))*bin_size)* \ |
---|
| 274 | ((index + floor(n_sub/2.0))*bin_size)* \ |
---|
| 275 | ((index + floor(n_sub/2.0))*bin_size) |
---|
| 276 | # l_cubic |
---|
| 277 | elif func_idx == 5: |
---|
| 278 | out = 1.0+(((index + floor(n_sub/2.0)))*bin_size - 1.0) *\ |
---|
| 279 | (((index + floor(n_sub/2.0)))*bin_size - 1.0) *\ |
---|
| 280 | (((index + floor(n_sub/2.0)))*bin_size - 1.0) |
---|
| 281 | # return output |
---|
| 282 | return out |
---|
| 283 | |
---|
| 284 | def setParam(self, name, value): |
---|
| 285 | """ |
---|
| 286 | Set the value of a model parameter |
---|
| 287 | |
---|
| 288 | : param name: name of the parameter |
---|
| 289 | : param value: value of the parameter |
---|
| 290 | """ |
---|
| 291 | # set param to new model |
---|
| 292 | self._setParamHelper( name, value) |
---|
| 293 | |
---|
| 294 | ## setParam to model |
---|
| 295 | if name=='sld_medium': |
---|
| 296 | # the sld_*** model.params not in params must set to value of sld_solv |
---|
| 297 | for key in self.model.params.iterkeys(): |
---|
| 298 | if key not in self.params.keys()and key.split('_')[0] == 'sld': |
---|
| 299 | self.model.setParam(key, value) |
---|
| 300 | |
---|
| 301 | self.model.setParam( name, value) |
---|
| 302 | |
---|
| 303 | def _setParamHelper(self, name, value): |
---|
| 304 | """ |
---|
| 305 | Helper function to setParam |
---|
| 306 | """ |
---|
| 307 | |
---|
| 308 | # Look for standard parameter |
---|
| 309 | for item in self.params.keys(): |
---|
| 310 | if item.lower()==name.lower(): |
---|
| 311 | self.params[item] = value |
---|
| 312 | return |
---|
| 313 | |
---|
| 314 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 315 | |
---|
| 316 | |
---|
| 317 | def _set_fixed_params(self): |
---|
| 318 | """ |
---|
| 319 | Fill the self.fixed list with the model fixed list |
---|
| 320 | """ |
---|
| 321 | pass |
---|
| 322 | |
---|
| 323 | def run(self, x = 0.0): |
---|
| 324 | """ |
---|
| 325 | Evaluate the model |
---|
| 326 | |
---|
| 327 | :param x: input q, or [q,phi] |
---|
| 328 | |
---|
| 329 | :return: scattering function P(q) |
---|
| 330 | |
---|
| 331 | """ |
---|
| 332 | |
---|
| 333 | return self.model.run(x) |
---|
| 334 | |
---|
| 335 | def runXY(self, x = 0.0): |
---|
| 336 | """ |
---|
| 337 | Evaluate the model |
---|
| 338 | |
---|
| 339 | : param x: input q-value (float or [float, float] as [qx, qy]) |
---|
| 340 | : return: scattering function value |
---|
| 341 | """ |
---|
| 342 | |
---|
| 343 | return self.model.runXY(x) |
---|
| 344 | |
---|
| 345 | ## Now (May27,10) directly uses the model eval function |
---|
| 346 | ## instead of the for-loop in Base Component. |
---|
| 347 | def evalDistribution(self, x = []): |
---|
| 348 | """ |
---|
| 349 | Evaluate the model in cartesian coordinates |
---|
| 350 | |
---|
| 351 | : param x: input q[], or [qx[], qy[]] |
---|
| 352 | : return: scattering function P(q[]) |
---|
| 353 | """ |
---|
| 354 | # set effective radius and scaling factor before run |
---|
| 355 | return self.model.evalDistribution(x) |
---|
| 356 | def calculate_ER(self): |
---|
| 357 | """ |
---|
| 358 | """ |
---|
| 359 | return self.model.calculate_ER() |
---|
| 360 | def set_dispersion(self, parameter, dispersion): |
---|
| 361 | """ |
---|
| 362 | Set the dispersion object for a model parameter |
---|
| 363 | |
---|
| 364 | : param parameter: name of the parameter [string] |
---|
| 365 | :dispersion: dispersion object of type DispersionModel |
---|
| 366 | """ |
---|
| 367 | pass |
---|