[35aface] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
| 20 | |
---|
| 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\refl.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CReflModel |
---|
| 29 | import copy |
---|
| 30 | |
---|
| 31 | class ReflModel(CReflModel, BaseComponent): |
---|
| 32 | """ |
---|
| 33 | Class that evaluates a ReflModel model. |
---|
| 34 | This file was auto-generated from ..\c_extensions\refl.h. |
---|
| 35 | Refer to that file and the structure it contains |
---|
| 36 | for details of the model. |
---|
| 37 | List of default parameters: |
---|
| 38 | n_layers = 1.0 |
---|
| 39 | scale = 1.0 |
---|
| 40 | thick_inter0 = 1.0 [A] |
---|
| 41 | func_inter0 = 0.0 |
---|
[4b3d25b] | 42 | sld_bottom0 = 2.07e-006 [1/A^(2)] |
---|
[35aface] | 43 | sld_medium = 1e-006 [1/A^(2)] |
---|
| 44 | background = 0.0 |
---|
| 45 | sld_flat1 = 4e-006 [1/A^(2)] |
---|
| 46 | sld_flat2 = 3.5e-006 [1/A^(2)] |
---|
| 47 | sld_flat3 = 4e-006 [1/A^(2)] |
---|
| 48 | sld_flat4 = 3.5e-006 [1/A^(2)] |
---|
| 49 | sld_flat5 = 4e-006 [1/A^(2)] |
---|
| 50 | sld_flat6 = 3.5e-006 [1/A^(2)] |
---|
| 51 | sld_flat7 = 4e-006 [1/A^(2)] |
---|
| 52 | sld_flat8 = 3.5e-006 [1/A^(2)] |
---|
| 53 | sld_flat9 = 4e-006 [1/A^(2)] |
---|
| 54 | sld_flat10 = 3.5e-006 [1/A^(2)] |
---|
| 55 | thick_inter1 = 1.0 [A] |
---|
| 56 | thick_inter2 = 1.0 [A] |
---|
| 57 | thick_inter3 = 1.0 [A] |
---|
| 58 | thick_inter4 = 1.0 [A] |
---|
| 59 | thick_inter5 = 1.0 [A] |
---|
| 60 | thick_inter6 = 1.0 [A] |
---|
| 61 | thick_inter7 = 1.0 [A] |
---|
| 62 | thick_inter8 = 1.0 [A] |
---|
| 63 | thick_inter9 = 1.0 [A] |
---|
| 64 | thick_inter10 = 1.0 [A] |
---|
| 65 | thick_flat1 = 10.0 [A] |
---|
| 66 | thick_flat2 = 100.0 [A] |
---|
| 67 | thick_flat3 = 100.0 [A] |
---|
| 68 | thick_flat4 = 100.0 [A] |
---|
| 69 | thick_flat5 = 100.0 [A] |
---|
| 70 | thick_flat6 = 100.0 [A] |
---|
| 71 | thick_flat7 = 100.0 [A] |
---|
| 72 | thick_flat8 = 100.0 [A] |
---|
| 73 | thick_flat9 = 100.0 [A] |
---|
| 74 | thick_flat10 = 100.0 [A] |
---|
| 75 | func_inter1 = 0.0 |
---|
| 76 | func_inter2 = 0.0 |
---|
| 77 | func_inter3 = 0.0 |
---|
| 78 | func_inter4 = 0.0 |
---|
| 79 | func_inter5 = 0.0 |
---|
| 80 | func_inter6 = 0.0 |
---|
| 81 | func_inter7 = 0.0 |
---|
| 82 | func_inter8 = 0.0 |
---|
| 83 | func_inter9 = 0.0 |
---|
| 84 | func_inter10 = 0.0 |
---|
| 85 | |
---|
| 86 | """ |
---|
| 87 | |
---|
| 88 | def __init__(self): |
---|
| 89 | """ Initialization """ |
---|
| 90 | |
---|
| 91 | # Initialize BaseComponent first, then sphere |
---|
| 92 | BaseComponent.__init__(self) |
---|
| 93 | CReflModel.__init__(self) |
---|
| 94 | |
---|
| 95 | ## Name of the model |
---|
| 96 | self.name = "ReflModel" |
---|
| 97 | ## Model description |
---|
[4b3d25b] | 98 | self.description ="""Calculate neutron reflectivity using the Parratt iterative formula |
---|
| 99 | Parameters: |
---|
| 100 | background:background |
---|
| 101 | scale: scale factor |
---|
| 102 | sld_bottom0: the SLD of the substrate |
---|
| 103 | sld_medium: the SLD of the incident medium |
---|
| 104 | or superstrate |
---|
| 105 | sld_flatN: the SLD of the flat region of |
---|
| 106 | the N'th layer |
---|
| 107 | thick_flatN: the thickness of the flat |
---|
| 108 | region of the N'th layer |
---|
| 109 | func_interN: the function used to describe |
---|
| 110 | the interface of the N'th layer |
---|
| 111 | thick_interN: the thickness of the interface |
---|
| 112 | of the N'th layer |
---|
| 113 | Note: the layer number starts to increase |
---|
| 114 | from the bottom (substrate) to the top.""" |
---|
[35aface] | 115 | |
---|
| 116 | ## Parameter details [units, min, max] |
---|
| 117 | self.details = {} |
---|
| 118 | self.details['n_layers'] = ['', None, None] |
---|
| 119 | self.details['scale'] = ['', None, None] |
---|
| 120 | self.details['thick_inter0'] = ['[A]', None, None] |
---|
| 121 | self.details['func_inter0'] = ['', None, None] |
---|
[4b3d25b] | 122 | self.details['sld_bottom0'] = ['[1/A^(2)]', None, None] |
---|
[35aface] | 123 | self.details['sld_medium'] = ['[1/A^(2)]', None, None] |
---|
| 124 | self.details['background'] = ['', None, None] |
---|
| 125 | self.details['sld_flat1'] = ['[1/A^(2)]', None, None] |
---|
| 126 | self.details['sld_flat2'] = ['[1/A^(2)]', None, None] |
---|
| 127 | self.details['sld_flat3'] = ['[1/A^(2)]', None, None] |
---|
| 128 | self.details['sld_flat4'] = ['[1/A^(2)]', None, None] |
---|
| 129 | self.details['sld_flat5'] = ['[1/A^(2)]', None, None] |
---|
| 130 | self.details['sld_flat6'] = ['[1/A^(2)]', None, None] |
---|
| 131 | self.details['sld_flat7'] = ['[1/A^(2)]', None, None] |
---|
| 132 | self.details['sld_flat8'] = ['[1/A^(2)]', None, None] |
---|
| 133 | self.details['sld_flat9'] = ['[1/A^(2)]', None, None] |
---|
| 134 | self.details['sld_flat10'] = ['[1/A^(2)]', None, None] |
---|
| 135 | self.details['thick_inter1'] = ['[A]', None, None] |
---|
| 136 | self.details['thick_inter2'] = ['[A]', None, None] |
---|
| 137 | self.details['thick_inter3'] = ['[A]', None, None] |
---|
| 138 | self.details['thick_inter4'] = ['[A]', None, None] |
---|
| 139 | self.details['thick_inter5'] = ['[A]', None, None] |
---|
| 140 | self.details['thick_inter6'] = ['[A]', None, None] |
---|
| 141 | self.details['thick_inter7'] = ['[A]', None, None] |
---|
| 142 | self.details['thick_inter8'] = ['[A]', None, None] |
---|
| 143 | self.details['thick_inter9'] = ['[A]', None, None] |
---|
| 144 | self.details['thick_inter10'] = ['[A]', None, None] |
---|
| 145 | self.details['thick_flat1'] = ['[A]', None, None] |
---|
| 146 | self.details['thick_flat2'] = ['[A]', None, None] |
---|
| 147 | self.details['thick_flat3'] = ['[A]', None, None] |
---|
| 148 | self.details['thick_flat4'] = ['[A]', None, None] |
---|
| 149 | self.details['thick_flat5'] = ['[A]', None, None] |
---|
| 150 | self.details['thick_flat6'] = ['[A]', None, None] |
---|
| 151 | self.details['thick_flat7'] = ['[A]', None, None] |
---|
| 152 | self.details['thick_flat8'] = ['[A]', None, None] |
---|
| 153 | self.details['thick_flat9'] = ['[A]', None, None] |
---|
| 154 | self.details['thick_flat10'] = ['[A]', None, None] |
---|
| 155 | self.details['func_inter1'] = ['', None, None] |
---|
| 156 | self.details['func_inter2'] = ['', None, None] |
---|
| 157 | self.details['func_inter3'] = ['', None, None] |
---|
| 158 | self.details['func_inter4'] = ['', None, None] |
---|
| 159 | self.details['func_inter5'] = ['', None, None] |
---|
| 160 | self.details['func_inter6'] = ['', None, None] |
---|
| 161 | self.details['func_inter7'] = ['', None, None] |
---|
| 162 | self.details['func_inter8'] = ['', None, None] |
---|
| 163 | self.details['func_inter9'] = ['', None, None] |
---|
| 164 | self.details['func_inter10'] = ['', None, None] |
---|
| 165 | |
---|
| 166 | ## fittable parameters |
---|
| 167 | self.fixed=[] |
---|
| 168 | |
---|
| 169 | ## non-fittable parameters |
---|
| 170 | self.non_fittable=['n_layers', 'func_inter0', 'func_inter1', 'func_inter2', 'func_inter3', 'func_inter4', 'func_inter5', 'func_inter5', 'func_inter7', 'func_inter8', 'func_inter9', 'func_inter10'] |
---|
| 171 | |
---|
| 172 | ## parameters with orientation |
---|
| 173 | self.orientation_params =[] |
---|
| 174 | |
---|
| 175 | def clone(self): |
---|
| 176 | """ Return a identical copy of self """ |
---|
| 177 | return self._clone(ReflModel()) |
---|
| 178 | |
---|
| 179 | def __getstate__(self): |
---|
| 180 | """ |
---|
| 181 | return object state for pickling and copying |
---|
| 182 | """ |
---|
| 183 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 184 | |
---|
| 185 | return self.__dict__, model_state |
---|
| 186 | |
---|
| 187 | def __setstate__(self, state): |
---|
| 188 | """ |
---|
| 189 | create object from pickled state |
---|
| 190 | |
---|
| 191 | :param state: the state of the current model |
---|
| 192 | |
---|
| 193 | """ |
---|
| 194 | |
---|
| 195 | self.__dict__, model_state = state |
---|
| 196 | self.params = model_state['params'] |
---|
| 197 | self.dispersion = model_state['dispersion'] |
---|
| 198 | self.log = model_state['log'] |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | def run(self, x=0.0): |
---|
| 202 | """ |
---|
| 203 | Evaluate the model |
---|
| 204 | |
---|
| 205 | :param x: input q, or [q,phi] |
---|
| 206 | |
---|
| 207 | :return: scattering function P(q) |
---|
| 208 | |
---|
| 209 | """ |
---|
| 210 | |
---|
| 211 | return CReflModel.run(self, x) |
---|
| 212 | |
---|
| 213 | def runXY(self, x=0.0): |
---|
| 214 | """ |
---|
| 215 | Evaluate the model in cartesian coordinates |
---|
| 216 | |
---|
| 217 | :param x: input q, or [qx, qy] |
---|
| 218 | |
---|
| 219 | :return: scattering function P(q) |
---|
| 220 | |
---|
| 221 | """ |
---|
| 222 | |
---|
| 223 | return CReflModel.runXY(self, x) |
---|
| 224 | |
---|
| 225 | def evalDistribution(self, x=[]): |
---|
| 226 | """ |
---|
| 227 | Evaluate the model in cartesian coordinates |
---|
| 228 | |
---|
| 229 | :param x: input q[], or [qx[], qy[]] |
---|
| 230 | |
---|
| 231 | :return: scattering function P(q[]) |
---|
| 232 | |
---|
| 233 | """ |
---|
| 234 | return CReflModel.evalDistribution(self, x) |
---|
| 235 | |
---|
| 236 | def calculate_ER(self): |
---|
| 237 | """ |
---|
| 238 | Calculate the effective radius for P(q)*S(q) |
---|
| 239 | |
---|
| 240 | :return: the value of the effective radius |
---|
| 241 | |
---|
| 242 | """ |
---|
| 243 | return CReflModel.calculate_ER(self) |
---|
| 244 | |
---|
| 245 | def set_dispersion(self, parameter, dispersion): |
---|
| 246 | """ |
---|
| 247 | Set the dispersion object for a model parameter |
---|
| 248 | |
---|
| 249 | :param parameter: name of the parameter [string] |
---|
| 250 | :param dispersion: dispersion object of type DispersionModel |
---|
| 251 | |
---|
| 252 | """ |
---|
| 253 | return CReflModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | # End of file |
---|