[9ce41c6] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
[79ac6f8] | 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
[9ce41c6] | 16 | |
---|
| 17 | |
---|
[79ac6f8] | 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
[9ce41c6] | 20 | |
---|
[79ac6f8] | 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\prolate.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
[9ce41c6] | 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CProlateModel |
---|
| 29 | import copy |
---|
| 30 | |
---|
| 31 | class ProlateModel(CProlateModel, BaseComponent): |
---|
[79ac6f8] | 32 | """ |
---|
| 33 | Class that evaluates a ProlateModel model. |
---|
| 34 | This file was auto-generated from ..\c_extensions\prolate.h. |
---|
| 35 | Refer to that file and the structure it contains |
---|
| 36 | for details of the model. |
---|
| 37 | List of default parameters: |
---|
[9ce41c6] | 38 | scale = 1.0 |
---|
| 39 | major_core = 100.0 [A] |
---|
| 40 | minor_core = 50.0 [A] |
---|
| 41 | major_shell = 110.0 [A] |
---|
| 42 | minor_shell = 60.0 [A] |
---|
[27972c1d] | 43 | contrast = 1e-006 [1/A^(2)] |
---|
| 44 | sld_solvent = 6.3e-006 [1/A^(2)] |
---|
[9ce41c6] | 45 | background = 0.001 [1/cm] |
---|
| 46 | |
---|
| 47 | """ |
---|
| 48 | |
---|
| 49 | def __init__(self): |
---|
| 50 | """ Initialization """ |
---|
| 51 | |
---|
| 52 | # Initialize BaseComponent first, then sphere |
---|
| 53 | BaseComponent.__init__(self) |
---|
| 54 | CProlateModel.__init__(self) |
---|
| 55 | |
---|
| 56 | ## Name of the model |
---|
| 57 | self.name = "ProlateModel" |
---|
| 58 | ## Model description |
---|
| 59 | self.description ="""[ProlateCoreShellModel] Calculates the form factor for a prolate |
---|
| 60 | ellipsoid particle with a core_shell structure. |
---|
| 61 | The form factor is averaged over all possible |
---|
| 62 | orientations of the ellipsoid such that P(q) |
---|
| 63 | = scale*<f^2>/Vol + bkg, where f is the |
---|
| 64 | single particle scattering amplitude. |
---|
| 65 | [Parameters]: |
---|
| 66 | major_core = radius of major_core, |
---|
| 67 | minor_core = radius of minor_core, |
---|
| 68 | major_shell = radius of major_shell, |
---|
| 69 | minor_shell = radius of minor_shell, |
---|
| 70 | contrast = SLD_core - SLD_shell |
---|
| 71 | sld_solvent = SLD_solvent |
---|
| 72 | background = Incoherent bkg |
---|
| 73 | scale = scale |
---|
| 74 | Note:It is the users' responsibility to ensure |
---|
| 75 | that shell radii are larger than core radii.""" |
---|
| 76 | |
---|
[fe9c19b4] | 77 | ## Parameter details [units, min, max] |
---|
[9ce41c6] | 78 | self.details = {} |
---|
| 79 | self.details['scale'] = ['', None, None] |
---|
| 80 | self.details['major_core'] = ['[A]', None, None] |
---|
| 81 | self.details['minor_core'] = ['[A]', None, None] |
---|
| 82 | self.details['major_shell'] = ['[A]', None, None] |
---|
| 83 | self.details['minor_shell'] = ['[A]', None, None] |
---|
[27972c1d] | 84 | self.details['contrast'] = ['[1/A^(2)]', None, None] |
---|
| 85 | self.details['sld_solvent'] = ['[1/A^(2)]', None, None] |
---|
[9ce41c6] | 86 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 87 | |
---|
[fe9c19b4] | 88 | ## fittable parameters |
---|
[9ce41c6] | 89 | self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width'] |
---|
| 90 | |
---|
| 91 | ## parameters with orientation |
---|
| 92 | self.orientation_params =[] |
---|
| 93 | |
---|
| 94 | def clone(self): |
---|
| 95 | """ Return a identical copy of self """ |
---|
| 96 | return self._clone(ProlateModel()) |
---|
[fe9c19b4] | 97 | |
---|
| 98 | def __getstate__(self): |
---|
[79ac6f8] | 99 | """ |
---|
| 100 | return object state for pickling and copying |
---|
| 101 | """ |
---|
[fe9c19b4] | 102 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 103 | |
---|
| 104 | return self.__dict__, model_state |
---|
| 105 | |
---|
| 106 | def __setstate__(self, state): |
---|
[79ac6f8] | 107 | """ |
---|
| 108 | create object from pickled state |
---|
| 109 | |
---|
| 110 | :param state: the state of the current model |
---|
| 111 | |
---|
| 112 | """ |
---|
[fe9c19b4] | 113 | |
---|
| 114 | self.__dict__, model_state = state |
---|
| 115 | self.params = model_state['params'] |
---|
| 116 | self.dispersion = model_state['dispersion'] |
---|
| 117 | self.log = model_state['log'] |
---|
| 118 | |
---|
[9ce41c6] | 119 | |
---|
[79ac6f8] | 120 | def run(self, x=0.0): |
---|
| 121 | """ |
---|
| 122 | Evaluate the model |
---|
| 123 | |
---|
| 124 | :param x: input q, or [q,phi] |
---|
| 125 | |
---|
| 126 | :return: scattering function P(q) |
---|
| 127 | |
---|
[9ce41c6] | 128 | """ |
---|
| 129 | |
---|
| 130 | return CProlateModel.run(self, x) |
---|
| 131 | |
---|
[79ac6f8] | 132 | def runXY(self, x=0.0): |
---|
| 133 | """ |
---|
| 134 | Evaluate the model in cartesian coordinates |
---|
| 135 | |
---|
| 136 | :param x: input q, or [qx, qy] |
---|
| 137 | |
---|
| 138 | :return: scattering function P(q) |
---|
| 139 | |
---|
[9ce41c6] | 140 | """ |
---|
| 141 | |
---|
| 142 | return CProlateModel.runXY(self, x) |
---|
| 143 | |
---|
[79ac6f8] | 144 | def evalDistribution(self, x=[]): |
---|
| 145 | """ |
---|
| 146 | Evaluate the model in cartesian coordinates |
---|
| 147 | |
---|
| 148 | :param x: input q[], or [qx[], qy[]] |
---|
| 149 | |
---|
| 150 | :return: scattering function P(q[]) |
---|
| 151 | |
---|
[9ce41c6] | 152 | """ |
---|
[f9a1279] | 153 | return CProlateModel.evalDistribution(self, x) |
---|
[9ce41c6] | 154 | |
---|
| 155 | def calculate_ER(self): |
---|
[79ac6f8] | 156 | """ |
---|
| 157 | Calculate the effective radius for P(q)*S(q) |
---|
| 158 | |
---|
| 159 | :return: the value of the effective radius |
---|
| 160 | |
---|
[9ce41c6] | 161 | """ |
---|
| 162 | return CProlateModel.calculate_ER(self) |
---|
| 163 | |
---|
| 164 | def set_dispersion(self, parameter, dispersion): |
---|
| 165 | """ |
---|
[79ac6f8] | 166 | Set the dispersion object for a model parameter |
---|
| 167 | |
---|
| 168 | :param parameter: name of the parameter [string] |
---|
| 169 | :param dispersion: dispersion object of type DispersionModel |
---|
| 170 | |
---|
[9ce41c6] | 171 | """ |
---|
| 172 | return CProlateModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | # End of file |
---|