source: sasview/sansmodels/src/sans/models/ParallelepipedModel.py @ 2e862a0

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 2e862a0 was 35aface, checked in by Jae Cho <jhjcho@…>, 14 years ago

addede new models and attr. non_fittable

  • Property mode set to 100644
File size: 5.8 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\parallelepiped.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CParallelepipedModel
29import copy   
30   
31class ParallelepipedModel(CParallelepipedModel, BaseComponent):
32    """
33    Class that evaluates a ParallelepipedModel model.
34    This file was auto-generated from ..\c_extensions\parallelepiped.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         short_a         = 35.0 [A]
40         short_b         = 75.0 [A]
41         long_c          = 400.0 [A]
42         sldPipe         = 6.3e-006 [1/A^(2)]
43         sldSolv         = 1e-006 [1/A^(2)]
44         background      = 0.0 [1/cm]
45         parallel_theta  = 0.0 [rad]
46         parallel_phi    = 0.0 [rad]
47         parallel_psi    = 0.0 [rad]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CParallelepipedModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "ParallelepipedModel"
60        ## Model description
61        self.description =""" Form factor for a rectangular solid with uniform scattering length density.
62               
63                scale:Scale factor
64                short_a: length of short edge  [A]
65                short_b: length of another short edge [A]
66                long_c: length of long edge  of the parallelepiped [A]
67                sldPipe: Pipe_sld
68                sldSolv: solvent_sld
69                background:Incoherent Background [1/cm]"""
70       
71        ## Parameter details [units, min, max]
72        self.details = {}
73        self.details['scale'] = ['', None, None]
74        self.details['short_a'] = ['[A]', None, None]
75        self.details['short_b'] = ['[A]', None, None]
76        self.details['long_c'] = ['[A]', None, None]
77        self.details['sldPipe'] = ['[1/A^(2)]', None, None]
78        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
79        self.details['background'] = ['[1/cm]', None, None]
80        self.details['parallel_theta'] = ['[rad]', None, None]
81        self.details['parallel_phi'] = ['[rad]', None, None]
82        self.details['parallel_psi'] = ['[rad]', None, None]
83
84        ## fittable parameters
85        self.fixed=['short_a.width', 'short_b.width', 'long_c.width', 'parallel_phi.width', 'parallel_psi.width', 'parallel_theta.width']
86       
87        ## non-fittable parameters
88        self.non_fittable=[]
89       
90        ## parameters with orientation
91        self.orientation_params =['parallel_phi', 'parallel_psi', 'parallel_theta', 'parallel_phi.width', 'parallel_psi.width', 'parallel_theta.width']
92   
93    def clone(self):
94        """ Return a identical copy of self """
95        return self._clone(ParallelepipedModel())   
96       
97    def __getstate__(self):
98        """
99        return object state for pickling and copying
100        """
101        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
102       
103        return self.__dict__, model_state
104       
105    def __setstate__(self, state):
106        """
107        create object from pickled state
108       
109        :param state: the state of the current model
110       
111        """
112       
113        self.__dict__, model_state = state
114        self.params = model_state['params']
115        self.dispersion = model_state['dispersion']
116        self.log = model_state['log']
117       
118   
119    def run(self, x=0.0):
120        """
121        Evaluate the model
122       
123        :param x: input q, or [q,phi]
124       
125        :return: scattering function P(q)
126       
127        """
128       
129        return CParallelepipedModel.run(self, x)
130   
131    def runXY(self, x=0.0):
132        """
133        Evaluate the model in cartesian coordinates
134       
135        :param x: input q, or [qx, qy]
136       
137        :return: scattering function P(q)
138       
139        """
140       
141        return CParallelepipedModel.runXY(self, x)
142       
143    def evalDistribution(self, x=[]):
144        """
145        Evaluate the model in cartesian coordinates
146       
147        :param x: input q[], or [qx[], qy[]]
148       
149        :return: scattering function P(q[])
150       
151        """
152        return CParallelepipedModel.evalDistribution(self, x)
153       
154    def calculate_ER(self):
155        """
156        Calculate the effective radius for P(q)*S(q)
157       
158        :return: the value of the effective radius
159       
160        """       
161        return CParallelepipedModel.calculate_ER(self)
162       
163    def set_dispersion(self, parameter, dispersion):
164        """
165        Set the dispersion object for a model parameter
166       
167        :param parameter: name of the parameter [string]
168        :param dispersion: dispersion object of type DispersionModel
169       
170        """
171        return CParallelepipedModel.set_dispersion(self, parameter, dispersion.cdisp)
172       
173   
174# End of file
Note: See TracBrowser for help on using the repository browser.