1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | ############################################################################## |
---|
4 | # This software was developed by the University of Tennessee as part of the |
---|
5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
6 | # project funded by the US National Science Foundation. |
---|
7 | # |
---|
8 | # If you use DANSE applications to do scientific research that leads to |
---|
9 | # publication, we ask that you acknowledge the use of the software with the |
---|
10 | # following sentence: |
---|
11 | # |
---|
12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
13 | # |
---|
14 | # copyright 2008, University of Tennessee |
---|
15 | ############################################################################## |
---|
16 | |
---|
17 | |
---|
18 | """ |
---|
19 | Provide functionality for a C extension model |
---|
20 | |
---|
21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\oblate.h |
---|
23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
24 | |
---|
25 | """ |
---|
26 | |
---|
27 | from sans.models.BaseComponent import BaseComponent |
---|
28 | from sans_extension.c_models import COblateModel |
---|
29 | import copy |
---|
30 | |
---|
31 | class OblateModel(COblateModel, BaseComponent): |
---|
32 | """ |
---|
33 | Class that evaluates a OblateModel model. |
---|
34 | This file was auto-generated from ..\c_extensions\oblate.h. |
---|
35 | Refer to that file and the structure it contains |
---|
36 | for details of the model. |
---|
37 | List of default parameters: |
---|
38 | scale = 1.0 |
---|
39 | major_core = 200.0 [A] |
---|
40 | minor_core = 20.0 [A] |
---|
41 | major_shell = 250.0 [A] |
---|
42 | minor_shell = 30.0 [A] |
---|
43 | contrast = 1e-006 [1/A^(2)] |
---|
44 | sld_solvent = 6.3e-006 [1/A^(2)] |
---|
45 | background = 0.001 [1/cm] |
---|
46 | axis_theta = 1.0 [rad] |
---|
47 | axis_phi = 1.0 [rad] |
---|
48 | |
---|
49 | """ |
---|
50 | |
---|
51 | def __init__(self): |
---|
52 | """ Initialization """ |
---|
53 | |
---|
54 | # Initialize BaseComponent first, then sphere |
---|
55 | BaseComponent.__init__(self) |
---|
56 | COblateModel.__init__(self) |
---|
57 | |
---|
58 | ## Name of the model |
---|
59 | self.name = "OblateModel" |
---|
60 | ## Model description |
---|
61 | self.description ="""[OblateCoreShellModel] Calculates the form factor for an oblate |
---|
62 | ellipsoid particle with a core_shell structure. |
---|
63 | The form factor is averaged over all possible |
---|
64 | orientations of the ellipsoid such that P(q) |
---|
65 | = scale*<f^2>/Vol + bkg, where f is the |
---|
66 | single particle scattering amplitude. |
---|
67 | [Parameters]: |
---|
68 | major_core = radius of major_core, |
---|
69 | minor_core = radius of minor_core, |
---|
70 | major_shell = radius of major_shell, |
---|
71 | minor_shell = radius of minor_shell, |
---|
72 | contrast = SLD_core - SLD_shell |
---|
73 | sld_solvent = SLD_solvent |
---|
74 | background = Incoherent bkg |
---|
75 | scale =scale |
---|
76 | Note:It is the users' responsibility to ensure |
---|
77 | that shell radii are larger than core radii.""" |
---|
78 | |
---|
79 | ## Parameter details [units, min, max] |
---|
80 | self.details = {} |
---|
81 | self.details['scale'] = ['', None, None] |
---|
82 | self.details['major_core'] = ['[A]', None, None] |
---|
83 | self.details['minor_core'] = ['[A]', None, None] |
---|
84 | self.details['major_shell'] = ['[A]', None, None] |
---|
85 | self.details['minor_shell'] = ['[A]', None, None] |
---|
86 | self.details['contrast'] = ['[1/A^(2)]', None, None] |
---|
87 | self.details['sld_solvent'] = ['[1/A^(2)]', None, None] |
---|
88 | self.details['background'] = ['[1/cm]', None, None] |
---|
89 | self.details['axis_theta'] = ['[rad]', None, None] |
---|
90 | self.details['axis_phi'] = ['[rad]', None, None] |
---|
91 | |
---|
92 | ## fittable parameters |
---|
93 | self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width'] |
---|
94 | |
---|
95 | ## non-fittable parameters |
---|
96 | self.non_fittable=[] |
---|
97 | |
---|
98 | ## parameters with orientation |
---|
99 | self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] |
---|
100 | |
---|
101 | def clone(self): |
---|
102 | """ Return a identical copy of self """ |
---|
103 | return self._clone(OblateModel()) |
---|
104 | |
---|
105 | def __getstate__(self): |
---|
106 | """ |
---|
107 | return object state for pickling and copying |
---|
108 | """ |
---|
109 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
110 | |
---|
111 | return self.__dict__, model_state |
---|
112 | |
---|
113 | def __setstate__(self, state): |
---|
114 | """ |
---|
115 | create object from pickled state |
---|
116 | |
---|
117 | :param state: the state of the current model |
---|
118 | |
---|
119 | """ |
---|
120 | |
---|
121 | self.__dict__, model_state = state |
---|
122 | self.params = model_state['params'] |
---|
123 | self.dispersion = model_state['dispersion'] |
---|
124 | self.log = model_state['log'] |
---|
125 | |
---|
126 | |
---|
127 | def run(self, x=0.0): |
---|
128 | """ |
---|
129 | Evaluate the model |
---|
130 | |
---|
131 | :param x: input q, or [q,phi] |
---|
132 | |
---|
133 | :return: scattering function P(q) |
---|
134 | |
---|
135 | """ |
---|
136 | |
---|
137 | return COblateModel.run(self, x) |
---|
138 | |
---|
139 | def runXY(self, x=0.0): |
---|
140 | """ |
---|
141 | Evaluate the model in cartesian coordinates |
---|
142 | |
---|
143 | :param x: input q, or [qx, qy] |
---|
144 | |
---|
145 | :return: scattering function P(q) |
---|
146 | |
---|
147 | """ |
---|
148 | |
---|
149 | return COblateModel.runXY(self, x) |
---|
150 | |
---|
151 | def evalDistribution(self, x=[]): |
---|
152 | """ |
---|
153 | Evaluate the model in cartesian coordinates |
---|
154 | |
---|
155 | :param x: input q[], or [qx[], qy[]] |
---|
156 | |
---|
157 | :return: scattering function P(q[]) |
---|
158 | |
---|
159 | """ |
---|
160 | return COblateModel.evalDistribution(self, x) |
---|
161 | |
---|
162 | def calculate_ER(self): |
---|
163 | """ |
---|
164 | Calculate the effective radius for P(q)*S(q) |
---|
165 | |
---|
166 | :return: the value of the effective radius |
---|
167 | |
---|
168 | """ |
---|
169 | return COblateModel.calculate_ER(self) |
---|
170 | |
---|
171 | def set_dispersion(self, parameter, dispersion): |
---|
172 | """ |
---|
173 | Set the dispersion object for a model parameter |
---|
174 | |
---|
175 | :param parameter: name of the parameter [string] |
---|
176 | :param dispersion: dispersion object of type DispersionModel |
---|
177 | |
---|
178 | """ |
---|
179 | return COblateModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
180 | |
---|
181 | |
---|
182 | # End of file |
---|