source: sasview/sansmodels/src/sans/models/OblateModel.py @ f932c02

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since f932c02 was 96656e3, checked in by Jae Cho <jhjcho@…>, 14 years ago

update models due to changes of template

  • Property mode set to 100644
File size: 5.7 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\oblate.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import COblateModel
29import copy   
30
31def create_OblateModel():
32    obj = OblateModel()
33    #COblateModel.__init__(obj) is called by OblateModel constructor
34    return obj
35
36class OblateModel(COblateModel, BaseComponent):
37    """
38    Class that evaluates a OblateModel model.
39    This file was auto-generated from ..\c_extensions\oblate.h.
40    Refer to that file and the structure it contains
41    for details of the model.
42    List of default parameters:
43         scale           = 1.0
44         major_core      = 200.0 [A]
45         minor_core      = 20.0 [A]
46         major_shell     = 250.0 [A]
47         minor_shell     = 30.0 [A]
48         contrast        = 1e-006 [1/A^(2)]
49         sld_solvent     = 6.3e-006 [1/A^(2)]
50         background      = 0.001 [1/cm]
51         axis_theta      = 57.325 [deg]
52         axis_phi        = 57.325 [deg]
53
54    """
55       
56    def __init__(self):
57        """ Initialization """
58       
59        # Initialize BaseComponent first, then sphere
60        BaseComponent.__init__(self)
61        #apply(COblateModel.__init__, (self,))
62        COblateModel.__init__(self)
63       
64        ## Name of the model
65        self.name = "OblateModel"
66        ## Model description
67        self.description ="""[OblateCoreShellModel] Calculates the form factor for an oblate
68                ellipsoid particle with a core_shell structure.
69                The form factor is averaged over all possible
70                orientations of the ellipsoid such that P(q)
71                = scale*<f^2>/Vol + bkg, where f is the
72                single particle scattering amplitude.
73                [Parameters]:
74                major_core = radius of major_core,
75                minor_core = radius of minor_core,
76                major_shell = radius of major_shell,
77                minor_shell = radius of minor_shell,
78                contrast = SLD_core - SLD_shell
79                sld_solvent = SLD_solvent
80                background = Incoherent bkg
81                scale =scale
82                Note:It is the users' responsibility to ensure
83                that shell radii are larger than core radii."""
84       
85        ## Parameter details [units, min, max]
86        self.details = {}
87        self.details['scale'] = ['', None, None]
88        self.details['major_core'] = ['[A]', None, None]
89        self.details['minor_core'] = ['[A]', None, None]
90        self.details['major_shell'] = ['[A]', None, None]
91        self.details['minor_shell'] = ['[A]', None, None]
92        self.details['contrast'] = ['[1/A^(2)]', None, None]
93        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
94        self.details['background'] = ['[1/cm]', None, None]
95        self.details['axis_theta'] = ['[deg]', None, None]
96        self.details['axis_phi'] = ['[deg]', None, None]
97
98        ## fittable parameters
99        self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width']
100       
101        ## non-fittable parameters
102        self.non_fittable = []
103       
104        ## parameters with orientation
105        self.orientation_params = ['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width']
106   
107    def __reduce_ex__(self, proto):
108        """
109        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
110        c model.
111        """
112        return (create_OblateModel,tuple())
113       
114    def clone(self):
115        """ Return a identical copy of self """
116        return self._clone(OblateModel())   
117       
118   
119    def run(self, x=0.0):
120        """
121        Evaluate the model
122       
123        :param x: input q, or [q,phi]
124       
125        :return: scattering function P(q)
126       
127        """
128       
129        return COblateModel.run(self, x)
130   
131    def runXY(self, x=0.0):
132        """
133        Evaluate the model in cartesian coordinates
134       
135        :param x: input q, or [qx, qy]
136       
137        :return: scattering function P(q)
138       
139        """
140       
141        return COblateModel.runXY(self, x)
142       
143    def evalDistribution(self, x=[]):
144        """
145        Evaluate the model in cartesian coordinates
146       
147        :param x: input q[], or [qx[], qy[]]
148       
149        :return: scattering function P(q[])
150       
151        """
152        return COblateModel.evalDistribution(self, x)
153       
154    def calculate_ER(self):
155        """
156        Calculate the effective radius for P(q)*S(q)
157       
158        :return: the value of the effective radius
159       
160        """       
161        return COblateModel.calculate_ER(self)
162       
163    def set_dispersion(self, parameter, dispersion):
164        """
165        Set the dispersion object for a model parameter
166       
167        :param parameter: name of the parameter [string]
168        :param dispersion: dispersion object of type DispersionModel
169       
170        """
171        return COblateModel.set_dispersion(self, parameter, dispersion.cdisp)
172       
173   
174# End of file
Note: See TracBrowser for help on using the repository browser.