source: sasview/sansmodels/src/sans/models/OblateModel.py @ c451be9

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since c451be9 was c451be9, checked in by Jae Cho <jhjcho@…>, 15 years ago

corrections on the definition of polydispersity as suggested by steve K: should be normalized by average volume

  • Property mode set to 100644
File size: 5.5 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\oblate.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import COblateModel
26import copy   
27   
28class OblateModel(COblateModel, BaseComponent):
29    """ Class that evaluates a OblateModel model.
30        This file was auto-generated from ..\c_extensions\oblate.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         major_core      = 200.0 [A]
36         minor_core      = 20.0 [A]
37         major_shell     = 250.0 [A]
38         minor_shell     = 30.0 [A]
39         contrast        = 1e-006 [1/A^(2)]
40         sld_solvent     = 6.3e-006 [1/A^(2)]
41         background      = 0.001 [1/cm]
42         axis_theta      = 1.0 [rad]
43         axis_phi        = 1.0 [rad]
44
45    """
46       
47    def __init__(self):
48        """ Initialization """
49       
50        # Initialize BaseComponent first, then sphere
51        BaseComponent.__init__(self)
52        COblateModel.__init__(self)
53       
54        ## Name of the model
55        self.name = "OblateModel"
56        ## Model description
57        self.description ="""[OblateCoreShellModel] Calculates the form factor for an oblate
58                ellipsoid particle with a core_shell structure.
59                The form factor is averaged over all possible
60                orientations of the ellipsoid such that P(q)
61                = scale*<f^2>/Vol + bkg, where f is the
62                single particle scattering amplitude.
63                [Parameters]:
64                major_core = radius of major_core,
65                minor_core = radius of minor_core,
66                major_shell = radius of major_shell,
67                minor_shell = radius of minor_shell,
68                contrast = SLD_core - SLD_shell
69                sld_solvent = SLD_solvent
70                background = Incoherent bkg
71                scale =scale
72                Note:It is the users' responsibility to ensure
73                that shell radii are larger than core radii."""
74       
75        ## Parameter details [units, min, max]
76        self.details = {}
77        self.details['scale'] = ['', None, None]
78        self.details['major_core'] = ['[A]', None, None]
79        self.details['minor_core'] = ['[A]', None, None]
80        self.details['major_shell'] = ['[A]', None, None]
81        self.details['minor_shell'] = ['[A]', None, None]
82        self.details['contrast'] = ['[1/A^(2)]', None, None]
83        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
84        self.details['background'] = ['[1/cm]', None, None]
85        self.details['axis_theta'] = ['[rad]', None, None]
86        self.details['axis_phi'] = ['[rad]', None, None]
87
88        ## fittable parameters
89        self.fixed=['major_core.width', 'minor_core.width', 'major_shell.width', 'minor_shell.width']
90       
91        ## parameters with orientation
92        self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width']
93   
94    def clone(self):
95        """ Return a identical copy of self """
96        return self._clone(OblateModel())   
97       
98    def __getstate__(self):
99        """ return object state for pickling and copying """
100        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
101       
102        return self.__dict__, model_state
103       
104    def __setstate__(self, state):
105        """ create object from pickled state """
106       
107        self.__dict__, model_state = state
108        self.params = model_state['params']
109        self.dispersion = model_state['dispersion']
110        self.log = model_state['log']
111       
112   
113    def run(self, x = 0.0):
114        """ Evaluate the model
115            @param x: input q, or [q,phi]
116            @return: scattering function P(q)
117        """
118       
119        return COblateModel.run(self, x)
120   
121    def runXY(self, x = 0.0):
122        """ Evaluate the model in cartesian coordinates
123            @param x: input q, or [qx, qy]
124            @return: scattering function P(q)
125        """
126       
127        return COblateModel.runXY(self, x)
128       
129    def evalDistribition(self, x = []):
130        """ Evaluate the model in cartesian coordinates
131            @param x: input q[], or [qx[], qy[]]
132            @return: scattering function P(q[])
133        """
134        return COblateModel.evalDistribition(self, x)
135       
136    def calculate_ER(self):
137        """ Calculate the effective radius for P(q)*S(q)
138            @return: the value of the effective radius
139        """       
140        return COblateModel.calculate_ER(self)
141       
142    def set_dispersion(self, parameter, dispersion):
143        """
144            Set the dispersion object for a model parameter
145            @param parameter: name of the parameter [string]
146            @dispersion: dispersion object of type DispersionModel
147        """
148        return COblateModel.set_dispersion(self, parameter, dispersion.cdisp)
149       
150   
151# End of file
Note: See TracBrowser for help on using the repository browser.