1 | |
---|
2 | from sans.models.BaseComponent import BaseComponent |
---|
3 | import numpy, math |
---|
4 | import copy |
---|
5 | from sans.models.pluginmodel import Model1DPlugin |
---|
6 | class MultiplicationModel(BaseComponent): |
---|
7 | """ |
---|
8 | Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q): |
---|
9 | The model parameters are combined from both models, P(Q) and S(Q), except 'effective_radius' of S(Q) |
---|
10 | which will be calculated from P(Q) via calculate_ER(). |
---|
11 | The polydispersion is applicable only to P(Q), not to S(Q). |
---|
12 | Note: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'. |
---|
13 | """ |
---|
14 | def __init__(self, p_model, s_model ): |
---|
15 | BaseComponent.__init__(self) |
---|
16 | """ |
---|
17 | @param p_model: form factor, P(Q) |
---|
18 | @param s_model: structure factor, S(Q) |
---|
19 | """ |
---|
20 | |
---|
21 | ## Setting model name model description |
---|
22 | self.description="" |
---|
23 | self.name = p_model.name +" * "+ s_model.name |
---|
24 | self.description= self.name+"\n" |
---|
25 | self.fill_description(p_model, s_model) |
---|
26 | |
---|
27 | ##models |
---|
28 | self.p_model= p_model |
---|
29 | self.s_model= s_model |
---|
30 | |
---|
31 | |
---|
32 | ## dispersion |
---|
33 | self._set_dispersion() |
---|
34 | ## Define parameters |
---|
35 | self._set_params() |
---|
36 | ## Parameter details [units, min, max] |
---|
37 | self._set_details() |
---|
38 | #list of parameter that can be fitted |
---|
39 | self._set_fixed_params() |
---|
40 | ## parameters with orientation |
---|
41 | for item in self.p_model.orientation_params: |
---|
42 | self.orientation_params.append(item) |
---|
43 | |
---|
44 | for item in self.s_model.orientation_params: |
---|
45 | if not item in self.orientation_params: |
---|
46 | self.orientation_params.append(item) |
---|
47 | |
---|
48 | |
---|
49 | def _clone(self, obj): |
---|
50 | """ |
---|
51 | Internal utility function to copy the internal |
---|
52 | data members to a fresh copy. |
---|
53 | """ |
---|
54 | obj.params = copy.deepcopy(self.params) |
---|
55 | obj.description = copy.deepcopy(self.description) |
---|
56 | obj.details = copy.deepcopy(self.details) |
---|
57 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
58 | obj.p_model = self.p_model.clone() |
---|
59 | obj.s_model = self.s_model.clone() |
---|
60 | |
---|
61 | return obj |
---|
62 | |
---|
63 | |
---|
64 | def _set_dispersion(self): |
---|
65 | """ |
---|
66 | combined the two models dispersions |
---|
67 | Polydispersion should not be applied to s_model |
---|
68 | """ |
---|
69 | ##set dispersion only from p_model |
---|
70 | for name , value in self.p_model.dispersion.iteritems(): |
---|
71 | self.dispersion[name]= value |
---|
72 | |
---|
73 | def _set_params(self): |
---|
74 | """ |
---|
75 | Concatenate the parameters of the two models to create |
---|
76 | this model parameters |
---|
77 | """ |
---|
78 | |
---|
79 | for name , value in self.p_model.params.iteritems(): |
---|
80 | self.params[name]= value |
---|
81 | |
---|
82 | for name , value in self.s_model.params.iteritems(): |
---|
83 | #Remove the effect_radius from the (P*S) model parameters. |
---|
84 | if not name in self.params.keys() and name != 'effect_radius': |
---|
85 | self.params[name]= value |
---|
86 | |
---|
87 | def _set_details(self): |
---|
88 | """ |
---|
89 | Concatenate details of the two models to create |
---|
90 | this model details |
---|
91 | """ |
---|
92 | for name ,detail in self.p_model.details.iteritems(): |
---|
93 | self.details[name]= detail |
---|
94 | |
---|
95 | for name , detail in self.s_model.details.iteritems(): |
---|
96 | if not name in self.details.keys(): |
---|
97 | self.details[name]= detail |
---|
98 | |
---|
99 | def setParam(self, name, value): |
---|
100 | """ |
---|
101 | Set the value of a model parameter |
---|
102 | |
---|
103 | @param name: name of the parameter |
---|
104 | @param value: value of the parameter |
---|
105 | """ |
---|
106 | |
---|
107 | self._setParamHelper( name, value) |
---|
108 | |
---|
109 | if name in self.p_model.getParamList(): |
---|
110 | self.p_model.setParam( name, value) |
---|
111 | |
---|
112 | if name in self.s_model.getParamList(): |
---|
113 | self.s_model.setParam( name, value) |
---|
114 | |
---|
115 | self._setParamHelper( name, value) |
---|
116 | |
---|
117 | def _setParamHelper(self, name, value): |
---|
118 | """ |
---|
119 | Helper function to setparam |
---|
120 | """ |
---|
121 | # Look for dispersion parameters |
---|
122 | toks = name.split('.') |
---|
123 | if len(toks)==2: |
---|
124 | for item in self.dispersion.keys(): |
---|
125 | if item.lower()==toks[0].lower(): |
---|
126 | for par in self.dispersion[item]: |
---|
127 | if par.lower() == toks[1].lower(): |
---|
128 | self.dispersion[item][par] = value |
---|
129 | return |
---|
130 | else: |
---|
131 | # Look for standard parameter |
---|
132 | for item in self.params.keys(): |
---|
133 | if item.lower()==name.lower(): |
---|
134 | self.params[item] = value |
---|
135 | return |
---|
136 | |
---|
137 | raise ValueError, "Model does not contain parameter %s" % name |
---|
138 | |
---|
139 | |
---|
140 | def _set_fixed_params(self): |
---|
141 | """ |
---|
142 | fill the self.fixed list with the p_model fixed list |
---|
143 | """ |
---|
144 | for item in self.p_model.fixed: |
---|
145 | self.fixed.append(item) |
---|
146 | |
---|
147 | self.fixed.sort() |
---|
148 | |
---|
149 | |
---|
150 | def run(self, x = 0.0): |
---|
151 | """ Evaluate the model |
---|
152 | @param x: input q-value (float or [float, float] as [r, theta]) |
---|
153 | @return: (DAB value) |
---|
154 | """ |
---|
155 | |
---|
156 | effective_radius = self.p_model.calculate_ER() |
---|
157 | #Reset the effective_radius of s_model just before the run |
---|
158 | if effective_radius != None and effective_radius != NotImplemented: |
---|
159 | self.s_model.setParam('effect_radius',effective_radius) |
---|
160 | return self.p_model.run(x)*self.s_model.run(x) |
---|
161 | |
---|
162 | def runXY(self, x = 0.0): |
---|
163 | """ Evaluate the model |
---|
164 | @param x: input q-value (float or [float, float] as [qx, qy]) |
---|
165 | @return: DAB value |
---|
166 | """ |
---|
167 | |
---|
168 | effective_radius = self.p_model.calculate_ER() |
---|
169 | #Reset the effective_radius of s_model just before the run |
---|
170 | if effective_radius != None and effective_radius != NotImplemented: |
---|
171 | self.s_model.setParam('effect_radius',effective_radius) |
---|
172 | return self.p_model.runXY(x)* self.s_model.runXY(x) |
---|
173 | |
---|
174 | def set_dispersion(self, parameter, dispersion): |
---|
175 | """ |
---|
176 | Set the dispersion object for a model parameter |
---|
177 | @param parameter: name of the parameter [string] |
---|
178 | @dispersion: dispersion object of type DispersionModel |
---|
179 | """ |
---|
180 | value= None |
---|
181 | try: |
---|
182 | if parameter in self.p_model.dispersion.keys(): |
---|
183 | value= self.p_model.set_dispersion(parameter, dispersion) |
---|
184 | self._set_dispersion() |
---|
185 | return value |
---|
186 | except: |
---|
187 | raise |
---|
188 | |
---|
189 | def fill_description(self, p_model, s_model): |
---|
190 | """ |
---|
191 | Fill the description for P(Q)*S(Q) |
---|
192 | """ |
---|
193 | description = "" |
---|
194 | description += "Note:1) The effect_radius (effective radius) of %s \n"% (s_model.name) |
---|
195 | description +=" is automatically calculated from size parameters (radius...).\n" |
---|
196 | description += " 2) For non-spherical shape, this approximation is valid \n" |
---|
197 | description += " only for limited systems. Thus, use it at your own risk.\n" |
---|
198 | description +="See %s description and %s description \n"%( p_model.name, s_model.name ) |
---|
199 | description += " for details of individual models." |
---|
200 | self.description += description |
---|
201 | |
---|