source: sasview/sansmodels/src/sans/models/MultiplicationModel.py @ e08bd5b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since e08bd5b was e08bd5b, checked in by Jae Cho <jhjcho@…>, 12 years ago

c models fix: scale fix for P*S

  • Property mode set to 100644
File size: 10.9 KB
Line 
1
2from sans.models.BaseComponent import BaseComponent
3import numpy, math
4import copy
5from sans.models.pluginmodel import Model1DPlugin
6class MultiplicationModel(BaseComponent):
7    """
8        Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q):
9        The model parameters are combined from both models, P(Q) and S(Q), except 1) 'effect_radius' of S(Q)
10        which will be calculated from P(Q) via calculate_ER(),
11        and 2) 'scale' in P model which is synchronized w/ volfraction in S
12        then P*S is multiplied by a new param, 'scale_factor'.
13        The polydispersion is applicable only to P(Q), not to S(Q).
14        Note: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'.
15    """
16    def __init__(self, p_model, s_model ):
17        BaseComponent.__init__(self)
18        """
19            @param p_model: form factor, P(Q)
20            @param s_model: structure factor, S(Q)
21        """
22
23        ## Setting  model name model description
24        self.description=""
25        self.name = p_model.name +" * "+ s_model.name
26        self.description= self.name+"\n"
27        self.fill_description(p_model, s_model)
28
29        ## Define parameters
30        self.params = {}
31
32        ## Parameter details [units, min, max]
33        self.details = {}
34       
35        ##models
36        self.p_model= p_model
37        self.s_model= s_model       
38       
39        ## dispersion
40        self._set_dispersion()
41        ## Define parameters
42        self._set_params()
43        ## New parameter:Scaling factor
44        self.params['scale_factor'] = 1
45       
46        ## Parameter details [units, min, max]
47        self._set_details()
48        self.details['scale_factor'] = ['',     None, None]
49       
50        #list of parameter that can be fitted
51        self._set_fixed_params() 
52        ## parameters with orientation
53        for item in self.p_model.orientation_params:
54            self.orientation_params.append(item)
55           
56        for item in self.s_model.orientation_params:
57            if not item in self.orientation_params:
58                self.orientation_params.append(item)
59        # get multiplicity if model provide it, else 1.
60        try:
61            multiplicity = p_model.multiplicity
62        except:
63            multiplicity = 1
64        ## functional multiplicity of the model
65        self.multiplicity = multiplicity   
66         
67        # non-fittable parameters
68        self.non_fittable = p_model.non_fittable 
69        self.multiplicity_info = [] 
70        self.fun_list = {}
71        if self.non_fittable > 1:
72            try:
73                self.multiplicity_info = p_model.multiplicity_info
74                self.fun_list = p_model.fun_list
75            except:
76                pass
77        else:
78            self.multiplicity_info = []
79           
80    def _clone(self, obj):
81        """
82            Internal utility function to copy the internal
83            data members to a fresh copy.
84        """
85        obj.params     = copy.deepcopy(self.params)
86        obj.description     = copy.deepcopy(self.description)
87        obj.details    = copy.deepcopy(self.details)
88        obj.dispersion = copy.deepcopy(self.dispersion)
89        obj.p_model  = self.p_model.clone()
90        obj.s_model  = self.s_model.clone()
91        #obj = copy.deepcopy(self)
92        return obj
93   
94   
95    def _set_dispersion(self):
96        """
97           combined the two models dispersions
98           Polydispersion should not be applied to s_model
99        """
100        ##set dispersion only from p_model
101        for name , value in self.p_model.dispersion.iteritems():
102            self.dispersion[name]= value
103                                     
104    def getProfile(self):
105        """
106        Get SLD profile of p_model if exists
107       
108        : return: (r, beta) where r is a list of radius of the transition points
109                beta is a list of the corresponding SLD values
110        : Note: This works only for func_shell# = 2 (exp function).
111        """
112        try:
113            x,y = self.p_model.getProfile()
114        except:
115            x = None
116            y = None
117           
118        return x, y
119   
120    def _set_params(self):
121        """
122            Concatenate the parameters of the two models to create
123            this model parameters
124        """
125
126        for name , value in self.p_model.params.iteritems():
127            if not name in self.params.keys() and name != 'scale':
128                self.params[name]= value
129           
130        for name , value in self.s_model.params.iteritems():
131            #Remove the effect_radius from the (P*S) model parameters.
132            if not name in self.params.keys() and name != 'effect_radius':
133                self.params[name]= value
134               
135        # Set "scale and effec_radius to P and S model as initializing
136        # since run P*S comes from P and S separately.
137        self._set_scale_factor()
138        self._set_effect_radius()       
139           
140    def _set_details(self):
141        """
142            Concatenate details of the two models to create
143            this model details
144        """
145        for name ,detail in self.p_model.details.iteritems():
146            if name != 'scale':
147                self.details[name]= detail
148           
149        for name , detail in self.s_model.details.iteritems():
150            if not name in self.details.keys() or name != 'effect_radius':
151                self.details[name]= detail
152   
153    def _set_scale_factor(self):
154        """
155            Set scale=volfraction to P model
156        """
157        value = self.params['volfraction']
158        if value != None: 
159            factor = self.p_model.calculate_VR()
160            val = factor * value
161            self.p_model.setParam( 'scale', val)
162           
163           
164    def _set_effect_radius(self):
165        """
166            Set effective radius to S(Q) model
167        """
168        if not 'effect_radius' in self.s_model.params.keys():
169            return
170        effective_radius = self.p_model.calculate_ER()
171        #Reset the effective_radius of s_model just before the run
172        if effective_radius != None and effective_radius != NotImplemented:
173            self.s_model.setParam('effect_radius',effective_radius)
174               
175    def setParam(self, name, value):
176        """
177            Set the value of a model parameter
178       
179            @param name: name of the parameter
180            @param value: value of the parameter
181        """
182        # set param to P*S model
183        self._setParamHelper( name, value)
184       
185        ## setParam to p model
186        # set 'scale' in P(Q) equal to volfraction
187        if name == 'volfraction':
188            self._set_scale_factor()
189        elif name in self.p_model.getParamList():
190            self.p_model.setParam( name, value)
191       
192        ## setParam to s model
193        # This is a little bit abundant: Todo: find better way         
194        self._set_effect_radius()
195        if name in self.s_model.getParamList():
196            self.s_model.setParam( name, value)
197           
198
199        #self._setParamHelper( name, value)
200       
201    def _setParamHelper(self, name, value):
202        """
203            Helper function to setparam
204        """
205        # Look for dispersion parameters
206        toks = name.split('.')
207        if len(toks)==2:
208            for item in self.dispersion.keys():
209                if item.lower()==toks[0].lower():
210                    for par in self.dispersion[item]:
211                        if par.lower() == toks[1].lower():
212                            self.dispersion[item][par] = value
213                            return
214        else:
215            # Look for standard parameter
216            for item in self.params.keys():
217                if item.lower()==name.lower():
218                    self.params[item] = value
219                    return
220           
221        raise ValueError, "Model does not contain parameter %s" % name
222             
223   
224    def _set_fixed_params(self):
225        """
226             fill the self.fixed list with the p_model fixed list
227        """
228        for item in self.p_model.fixed:
229            self.fixed.append(item)
230
231        self.fixed.sort()
232               
233               
234    def run(self, x = 0.0):
235        """ Evaluate the model
236            @param x: input q-value (float or [float, float] as [r, theta])
237            @return: (scattering function value)
238        """
239        # set effective radius and scaling factor before run
240        self._set_effect_radius()
241        self._set_scale_factor()
242        return self.params['scale_factor']*self.p_model.run(x)*self.s_model.run(x)
243
244    def runXY(self, x = 0.0):
245        """ Evaluate the model
246            @param x: input q-value (float or [float, float] as [qx, qy])
247            @return: scattering function value
248        """ 
249        # set effective radius and scaling factor before run
250        self._set_effect_radius()
251        self._set_scale_factor()
252        return self.params['scale_factor']*self.p_model.runXY(x)* self.s_model.runXY(x)
253   
254    ## Now (May27,10) directly uses the model eval function
255    ## instead of the for-loop in Base Component.
256    def evalDistribution(self, x = []):
257        """ Evaluate the model in cartesian coordinates
258            @param x: input q[], or [qx[], qy[]]
259            @return: scattering function P(q[])
260        """
261        # set effective radius and scaling factor before run
262        self._set_effect_radius()
263        self._set_scale_factor()
264        return self.params['scale_factor']*self.p_model.evalDistribution(x)* self.s_model.evalDistribution(x)
265
266    def set_dispersion(self, parameter, dispersion):
267        """
268            Set the dispersion object for a model parameter
269            @param parameter: name of the parameter [string]
270            @dispersion: dispersion object of type DispersionModel
271        """
272        value= None
273        try:
274            if parameter in self.p_model.dispersion.keys():
275                value= self.p_model.set_dispersion(parameter, dispersion)
276            self._set_dispersion()
277            return value
278        except:
279            raise 
280
281    def fill_description(self, p_model, s_model):
282        """
283            Fill the description for P(Q)*S(Q)
284        """
285        description = ""
286        description += "Note:1) The effect_radius (effective radius) of %s \n"% (s_model.name)
287        description +="             is automatically calculated from size parameters (radius...).\n"
288        description += "         2) For non-spherical shape, this approximation is valid \n"
289        description += "            only for limited systems. Thus, use it at your own risk.\n"
290        description +="See %s description and %s description \n"%( p_model.name, s_model.name )
291        description += "        for details of individual models."
292        self.description += description
293   
Note: See TracBrowser for help on using the repository browser.