source: sasview/sansmodels/src/sans/models/MultiplicationModel.py @ dac6869

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since dac6869 was ccb7363, checked in by Jae Cho <jhjcho@…>, 13 years ago

checking keys for effective radius

  • Property mode set to 100644
File size: 10.8 KB
Line 
1
2from sans.models.BaseComponent import BaseComponent
3import numpy, math
4import copy
5from sans.models.pluginmodel import Model1DPlugin
6class MultiplicationModel(BaseComponent):
7    """
8        Use for P(Q)*S(Q); function call must be in the order of P(Q) and then S(Q):
9        The model parameters are combined from both models, P(Q) and S(Q), except 1) 'effect_radius' of S(Q)
10        which will be calculated from P(Q) via calculate_ER(),
11        and 2) 'scale' in P model which is synchronized w/ volfraction in S
12        then P*S is multiplied by a new param, 'scale_factor'.
13        The polydispersion is applicable only to P(Q), not to S(Q).
14        Note: P(Q) refers to 'form factor' model while S(Q) does to 'structure factor'.
15    """
16    def __init__(self, p_model, s_model ):
17        BaseComponent.__init__(self)
18        """
19            @param p_model: form factor, P(Q)
20            @param s_model: structure factor, S(Q)
21        """
22
23        ## Setting  model name model description
24        self.description=""
25        self.name = p_model.name +" * "+ s_model.name
26        self.description= self.name+"\n"
27        self.fill_description(p_model, s_model)
28
29        ## Define parameters
30        self.params = {}
31
32        ## Parameter details [units, min, max]
33        self.details = {}
34       
35        ##models
36        self.p_model= p_model
37        self.s_model= s_model       
38       
39        ## dispersion
40        self._set_dispersion()
41        ## Define parameters
42        self._set_params()
43        ## New parameter:Scaling factor
44        self.params['scale_factor'] = 1
45       
46        ## Parameter details [units, min, max]
47        self._set_details()
48        self.details['scale_factor'] = ['',     None, None]
49       
50        #list of parameter that can be fitted
51        self._set_fixed_params() 
52        ## parameters with orientation
53        for item in self.p_model.orientation_params:
54            self.orientation_params.append(item)
55           
56        for item in self.s_model.orientation_params:
57            if not item in self.orientation_params:
58                self.orientation_params.append(item)
59        # get multiplicity if model provide it, else 1.
60        try:
61            multiplicity = p_model.multiplicity
62        except:
63            multiplicity = 1
64        ## functional multiplicity of the model
65        self.multiplicity = multiplicity   
66         
67        # non-fittable parameters
68        self.non_fittable = p_model.non_fittable 
69        self.multiplicity_info = [] 
70        self.fun_list = {}
71        if self.non_fittable > 1:
72            try:
73                self.multiplicity_info = p_model.multiplicity_info
74                self.fun_list = p_model.fun_list
75            except:
76                pass
77        else:
78            self.multiplicity_info = []
79           
80    def _clone(self, obj):
81        """
82            Internal utility function to copy the internal
83            data members to a fresh copy.
84        """
85        obj.params     = copy.deepcopy(self.params)
86        obj.description     = copy.deepcopy(self.description)
87        obj.details    = copy.deepcopy(self.details)
88        obj.dispersion = copy.deepcopy(self.dispersion)
89        obj.p_model  = self.p_model.clone()
90        obj.s_model  = self.s_model.clone()
91        #obj = copy.deepcopy(self)
92        return obj
93   
94   
95    def _set_dispersion(self):
96        """
97           combined the two models dispersions
98           Polydispersion should not be applied to s_model
99        """
100        ##set dispersion only from p_model
101        for name , value in self.p_model.dispersion.iteritems():
102            self.dispersion[name]= value
103                                     
104    def getProfile(self):
105        """
106        Get SLD profile of p_model if exists
107       
108        : return: (r, beta) where r is a list of radius of the transition points
109                beta is a list of the corresponding SLD values
110        : Note: This works only for func_shell# = 2 (exp function).
111        """
112        try:
113            x,y = self.p_model.getProfile()
114        except:
115            x = None
116            y = None
117           
118        return x, y
119   
120    def _set_params(self):
121        """
122            Concatenate the parameters of the two models to create
123            this model parameters
124        """
125
126        for name , value in self.p_model.params.iteritems():
127            if not name in self.params.keys() and name != 'scale':
128                self.params[name]= value
129           
130        for name , value in self.s_model.params.iteritems():
131            #Remove the effect_radius from the (P*S) model parameters.
132            if not name in self.params.keys() and name != 'effect_radius':
133                self.params[name]= value
134               
135        # Set "scale and effec_radius to P and S model as initializing
136        # since run P*S comes from P and S separately.
137        self._set_scale_factor()
138        self._set_effect_radius()       
139           
140    def _set_details(self):
141        """
142            Concatenate details of the two models to create
143            this model details
144        """
145        for name ,detail in self.p_model.details.iteritems():
146            if name != 'scale':
147                self.details[name]= detail
148           
149        for name , detail in self.s_model.details.iteritems():
150            if not name in self.details.keys() or name != 'effect_radius':
151                self.details[name]= detail
152   
153    def _set_scale_factor(self):
154        """
155            Set scale=volfraction to P model
156        """
157        value = self.params['volfraction']
158        if value != None: 
159            self.p_model.setParam( 'scale', value)
160           
161           
162    def _set_effect_radius(self):
163        """
164            Set effective radius to S(Q) model
165        """
166        if not 'effect_radius' in self.s_model.params.keys():
167            return
168        effective_radius = self.p_model.calculate_ER()
169        #Reset the effective_radius of s_model just before the run
170        if effective_radius != None and effective_radius != NotImplemented:
171            self.s_model.setParam('effect_radius',effective_radius)
172               
173    def setParam(self, name, value):
174        """
175            Set the value of a model parameter
176       
177            @param name: name of the parameter
178            @param value: value of the parameter
179        """
180        # set param to P*S model
181        self._setParamHelper( name, value)
182       
183        ## setParam to p model
184        # set 'scale' in P(Q) equal to volfraction
185        if name == 'volfraction':
186            self._set_scale_factor()
187        elif name in self.p_model.getParamList():
188            self.p_model.setParam( name, value)
189       
190        ## setParam to s model
191        # This is a little bit abundant: Todo: find better way         
192        self._set_effect_radius()
193        if name in self.s_model.getParamList():
194            self.s_model.setParam( name, value)
195           
196
197        #self._setParamHelper( name, value)
198       
199    def _setParamHelper(self, name, value):
200        """
201            Helper function to setparam
202        """
203        # Look for dispersion parameters
204        toks = name.split('.')
205        if len(toks)==2:
206            for item in self.dispersion.keys():
207                if item.lower()==toks[0].lower():
208                    for par in self.dispersion[item]:
209                        if par.lower() == toks[1].lower():
210                            self.dispersion[item][par] = value
211                            return
212        else:
213            # Look for standard parameter
214            for item in self.params.keys():
215                if item.lower()==name.lower():
216                    self.params[item] = value
217                    return
218           
219        raise ValueError, "Model does not contain parameter %s" % name
220             
221   
222    def _set_fixed_params(self):
223        """
224             fill the self.fixed list with the p_model fixed list
225        """
226        for item in self.p_model.fixed:
227            self.fixed.append(item)
228
229        self.fixed.sort()
230               
231               
232    def run(self, x = 0.0):
233        """ Evaluate the model
234            @param x: input q-value (float or [float, float] as [r, theta])
235            @return: (scattering function value)
236        """
237        # set effective radius and scaling factor before run
238        self._set_effect_radius()
239        self._set_scale_factor()
240        return self.params['scale_factor']*self.p_model.run(x)*self.s_model.run(x)
241
242    def runXY(self, x = 0.0):
243        """ Evaluate the model
244            @param x: input q-value (float or [float, float] as [qx, qy])
245            @return: scattering function value
246        """ 
247        # set effective radius and scaling factor before run
248        self._set_effect_radius()
249        self._set_scale_factor()
250        return self.params['scale_factor']*self.p_model.runXY(x)* self.s_model.runXY(x)
251   
252    ## Now (May27,10) directly uses the model eval function
253    ## instead of the for-loop in Base Component.
254    def evalDistribution(self, x = []):
255        """ Evaluate the model in cartesian coordinates
256            @param x: input q[], or [qx[], qy[]]
257            @return: scattering function P(q[])
258        """
259        # set effective radius and scaling factor before run
260        self._set_effect_radius()
261        self._set_scale_factor()
262        return self.params['scale_factor']*self.p_model.evalDistribution(x)* self.s_model.evalDistribution(x)
263
264    def set_dispersion(self, parameter, dispersion):
265        """
266            Set the dispersion object for a model parameter
267            @param parameter: name of the parameter [string]
268            @dispersion: dispersion object of type DispersionModel
269        """
270        value= None
271        try:
272            if parameter in self.p_model.dispersion.keys():
273                value= self.p_model.set_dispersion(parameter, dispersion)
274            self._set_dispersion()
275            return value
276        except:
277            raise 
278
279    def fill_description(self, p_model, s_model):
280        """
281            Fill the description for P(Q)*S(Q)
282        """
283        description = ""
284        description += "Note:1) The effect_radius (effective radius) of %s \n"% (s_model.name)
285        description +="             is automatically calculated from size parameters (radius...).\n"
286        description += "         2) For non-spherical shape, this approximation is valid \n"
287        description += "            only for limited systems. Thus, use it at your own risk.\n"
288        description +="See %s description and %s description \n"%( p_model.name, s_model.name )
289        description += "        for details of individual models."
290        self.description += description
291   
Note: See TracBrowser for help on using the repository browser.