[2c4b289] | 1 | #!/usr/bin/env python |
---|
| 2 | """ |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | """ |
---|
| 15 | |
---|
| 16 | """ Provide functionality for a C extension model |
---|
| 17 | |
---|
| 18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\multishell.h |
---|
| 20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 21 | |
---|
| 22 | """ |
---|
| 23 | |
---|
| 24 | from sans.models.BaseComponent import BaseComponent |
---|
| 25 | from sans_extension.c_models import CMultiShellModel |
---|
| 26 | import copy |
---|
| 27 | |
---|
| 28 | class MultiShellModel(CMultiShellModel, BaseComponent): |
---|
| 29 | """ Class that evaluates a MultiShellModel model. |
---|
| 30 | This file was auto-generated from ..\c_extensions\multishell.h. |
---|
| 31 | Refer to that file and the structure it contains |
---|
| 32 | for details of the model. |
---|
| 33 | List of default parameters: |
---|
| 34 | scale = 1.0 |
---|
| 35 | core_radius = 60.0 [A] |
---|
| 36 | s_thickness = 10.0 [A] |
---|
| 37 | w_thickness = 10.0 [A] |
---|
[27972c1d] | 38 | core_sld = 6.4e-006 [1/A^(2)] |
---|
| 39 | shell_sld = 4e-007 [1/A^(2)] |
---|
[2c4b289] | 40 | n_pairs = 2.0 |
---|
| 41 | background = 0.0 [1/cm] |
---|
| 42 | |
---|
| 43 | """ |
---|
| 44 | |
---|
| 45 | def __init__(self): |
---|
| 46 | """ Initialization """ |
---|
| 47 | |
---|
| 48 | # Initialize BaseComponent first, then sphere |
---|
| 49 | BaseComponent.__init__(self) |
---|
| 50 | CMultiShellModel.__init__(self) |
---|
| 51 | |
---|
| 52 | ## Name of the model |
---|
| 53 | self.name = "MultiShellModel" |
---|
| 54 | ## Model description |
---|
[5eb9154] | 55 | self.description =""" MultiShell (Sphere) Model (or Multilamellar Vesicles): Model parameters; |
---|
[2c4b289] | 56 | scale : scale factor |
---|
| 57 | core_radius : Core radius of the multishell |
---|
| 58 | s_thickness: shell thickness |
---|
| 59 | w_thickness: water thickness |
---|
| 60 | core_sld: core scattering length density |
---|
| 61 | shell_sld: shell scattering length density |
---|
| 62 | n_pairs:number of pairs of water/shell |
---|
| 63 | background: incoherent background""" |
---|
| 64 | |
---|
| 65 | ## Parameter details [units, min, max] |
---|
| 66 | self.details = {} |
---|
| 67 | self.details['scale'] = ['', None, None] |
---|
| 68 | self.details['core_radius'] = ['[A]', None, None] |
---|
| 69 | self.details['s_thickness'] = ['[A]', None, None] |
---|
| 70 | self.details['w_thickness'] = ['[A]', None, None] |
---|
[27972c1d] | 71 | self.details['core_sld'] = ['[1/A^(2)]', None, None] |
---|
| 72 | self.details['shell_sld'] = ['[1/A^(2)]', None, None] |
---|
[2c4b289] | 73 | self.details['n_pairs'] = ['', None, None] |
---|
| 74 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 75 | |
---|
| 76 | ## fittable parameters |
---|
[2cc633b] | 77 | self.fixed=['core_radius.width', 's_thickness.width', 'w_thickness.width'] |
---|
[2c4b289] | 78 | |
---|
| 79 | ## parameters with orientation |
---|
| 80 | self.orientation_params =[] |
---|
| 81 | |
---|
| 82 | def clone(self): |
---|
| 83 | """ Return a identical copy of self """ |
---|
| 84 | return self._clone(MultiShellModel()) |
---|
| 85 | |
---|
| 86 | def run(self, x = 0.0): |
---|
| 87 | """ Evaluate the model |
---|
| 88 | @param x: input q, or [q,phi] |
---|
| 89 | @return: scattering function P(q) |
---|
| 90 | """ |
---|
| 91 | |
---|
| 92 | return CMultiShellModel.run(self, x) |
---|
| 93 | |
---|
| 94 | def runXY(self, x = 0.0): |
---|
| 95 | """ Evaluate the model in cartesian coordinates |
---|
| 96 | @param x: input q, or [qx, qy] |
---|
| 97 | @return: scattering function P(q) |
---|
| 98 | """ |
---|
| 99 | |
---|
| 100 | return CMultiShellModel.runXY(self, x) |
---|
| 101 | |
---|
[9bd69098] | 102 | def evalDistribition(self, x = []): |
---|
| 103 | """ Evaluate the model in cartesian coordinates |
---|
| 104 | @param x: input q[], or [qx[], qy[]] |
---|
| 105 | @return: scattering function P(q[]) |
---|
| 106 | """ |
---|
| 107 | return CMultiShellModel.evalDistribition(self, x) |
---|
| 108 | |
---|
[5eb9154] | 109 | def calculate_ER(self): |
---|
| 110 | """ Calculate the effective radius for P(q)*S(q) |
---|
| 111 | @return: the value of the effective radius |
---|
| 112 | """ |
---|
| 113 | return CMultiShellModel.calculate_ER(self) |
---|
| 114 | |
---|
[2c4b289] | 115 | def set_dispersion(self, parameter, dispersion): |
---|
| 116 | """ |
---|
| 117 | Set the dispersion object for a model parameter |
---|
| 118 | @param parameter: name of the parameter [string] |
---|
| 119 | @dispersion: dispersion object of type DispersionModel |
---|
| 120 | """ |
---|
| 121 | return CMultiShellModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | # End of file |
---|