[870f131] | 1 | #!/usr/bin/env python |
---|
| 2 | """ |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | """ |
---|
| 15 | |
---|
| 16 | """ Provide functionality for a C extension model |
---|
| 17 | |
---|
| 18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
[9ce41c6] | 19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\logNormal.h |
---|
[870f131] | 20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 21 | |
---|
| 22 | """ |
---|
| 23 | |
---|
| 24 | from sans.models.BaseComponent import BaseComponent |
---|
| 25 | from sans_extension.c_models import CLogNormal |
---|
| 26 | import copy |
---|
| 27 | |
---|
| 28 | class LogNormal(CLogNormal, BaseComponent): |
---|
| 29 | """ Class that evaluates a LogNormal model. |
---|
[fe9c19b4] | 30 | This file was auto-generated from ..\c_extensions\logNormal.h. |
---|
| 31 | Refer to that file and the structure it contains |
---|
| 32 | for details of the model. |
---|
| 33 | List of default parameters: |
---|
[870f131] | 34 | scale = 1.0 |
---|
| 35 | sigma = 1.0 |
---|
| 36 | center = 0.0 |
---|
| 37 | |
---|
| 38 | """ |
---|
| 39 | |
---|
| 40 | def __init__(self): |
---|
| 41 | """ Initialization """ |
---|
| 42 | |
---|
| 43 | # Initialize BaseComponent first, then sphere |
---|
| 44 | BaseComponent.__init__(self) |
---|
| 45 | CLogNormal.__init__(self) |
---|
| 46 | |
---|
| 47 | ## Name of the model |
---|
| 48 | self.name = "LogNormal" |
---|
| 49 | ## Model description |
---|
| 50 | self.description ="""f(x)=scale * 1/(sigma*math.sqrt(2pi))e^(-1/2*((math.log(x)-mu)/sigma)^2)""" |
---|
| 51 | |
---|
[fe9c19b4] | 52 | ## Parameter details [units, min, max] |
---|
[870f131] | 53 | self.details = {} |
---|
| 54 | self.details['scale'] = ['', None, None] |
---|
| 55 | self.details['sigma'] = ['', None, None] |
---|
| 56 | self.details['center'] = ['', None, None] |
---|
| 57 | |
---|
[fe9c19b4] | 58 | ## fittable parameters |
---|
[870f131] | 59 | self.fixed=[] |
---|
| 60 | |
---|
| 61 | ## parameters with orientation |
---|
| 62 | self.orientation_params =[] |
---|
| 63 | |
---|
| 64 | def clone(self): |
---|
| 65 | """ Return a identical copy of self """ |
---|
| 66 | return self._clone(LogNormal()) |
---|
[fe9c19b4] | 67 | |
---|
| 68 | def __getstate__(self): |
---|
| 69 | """ return object state for pickling and copying """ |
---|
| 70 | print "__dict__",self.__dict__ |
---|
| 71 | #self.__dict__['params'] = self.params |
---|
| 72 | #self.__dict__['dispersion'] = self.dispersion |
---|
| 73 | #self.__dict__['log'] = self.log |
---|
| 74 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 75 | |
---|
| 76 | return self.__dict__, model_state |
---|
| 77 | |
---|
| 78 | def __setstate__(self, state): |
---|
| 79 | """ create object from pickled state """ |
---|
| 80 | |
---|
| 81 | self.__dict__, model_state = state |
---|
| 82 | self.params = model_state['params'] |
---|
| 83 | self.dispersion = model_state['dispersion'] |
---|
| 84 | self.log = model_state['log'] |
---|
| 85 | |
---|
[870f131] | 86 | |
---|
| 87 | def run(self, x = 0.0): |
---|
| 88 | """ Evaluate the model |
---|
| 89 | @param x: input q, or [q,phi] |
---|
| 90 | @return: scattering function P(q) |
---|
| 91 | """ |
---|
| 92 | |
---|
| 93 | return CLogNormal.run(self, x) |
---|
| 94 | |
---|
| 95 | def runXY(self, x = 0.0): |
---|
| 96 | """ Evaluate the model in cartesian coordinates |
---|
| 97 | @param x: input q, or [qx, qy] |
---|
| 98 | @return: scattering function P(q) |
---|
| 99 | """ |
---|
| 100 | |
---|
| 101 | return CLogNormal.runXY(self, x) |
---|
| 102 | |
---|
| 103 | def evalDistribition(self, x = []): |
---|
| 104 | """ Evaluate the model in cartesian coordinates |
---|
| 105 | @param x: input q[], or [qx[], qy[]] |
---|
| 106 | @return: scattering function P(q[]) |
---|
| 107 | """ |
---|
| 108 | return CLogNormal.evalDistribition(self, x) |
---|
| 109 | |
---|
[5eb9154] | 110 | def calculate_ER(self): |
---|
| 111 | """ Calculate the effective radius for P(q)*S(q) |
---|
| 112 | @return: the value of the effective radius |
---|
| 113 | """ |
---|
| 114 | return CLogNormal.calculate_ER(self) |
---|
| 115 | |
---|
[870f131] | 116 | def set_dispersion(self, parameter, dispersion): |
---|
| 117 | """ |
---|
| 118 | Set the dispersion object for a model parameter |
---|
| 119 | @param parameter: name of the parameter [string] |
---|
| 120 | @dispersion: dispersion object of type DispersionModel |
---|
| 121 | """ |
---|
| 122 | return CLogNormal.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | # End of file |
---|