source: sasview/sansmodels/src/sans/models/LamellarPSHGModel.py @ 20905a0

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 20905a0 was 79ac6f8, checked in by Gervaise Alina <gervyh@…>, 14 years ago

working on documentation

  • Property mode set to 100644
File size: 6.0 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\lamellarPS_HG.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CLamellarPSHGModel
29import copy   
30   
31class LamellarPSHGModel(CLamellarPSHGModel, BaseComponent):
32    """
33    Class that evaluates a LamellarPSHGModel model.
34    This file was auto-generated from ..\c_extensions\lamellarPS_HG.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         spacing         = 40.0 [A]
40         deltaT          = 10.0 [A]
41         deltaH          = 2.0 [A]
42         sld_tail        = 4e-007 [1/A^(2)]
43         sld_head        = 2e-006 [1/A^(2)]
44         sld_solvent     = 6e-006 [1/A^(2)]
45         n_plates        = 30.0
46         caille          = 0.001
47         background      = 0.001 [1/cm]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CLamellarPSHGModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "LamellarPSHGModel"
60        ## Model description
61        self.description ="""[Concentrated Lamellar (head+tail) Form Factor]: Calculates the
62                intensity from a lyotropic lamellar phase.
63                The intensity (form factor and structure factor)
64                calculated is for lamellae of two-layer scattering
65                length density that are randomly distributed in
66                solution (a powder average). The scattering
67                length density of the tail region, headgroup
68                region, and solvent are taken to be different.
69                The model can also be applied to large,
70                multi-lamellar vesicles.
71                No resolution smeared version is included
72                in the structure factor of this model.
73                *Parameters: spacing = repeat spacing,
74                deltaT = tail length,
75                deltaH = headgroup thickness,
76                n_plates = # of Lamellar plates
77                caille = Caille parameter (<0.8 or <1)
78                background = incoherent bgd
79                scale = scale factor ..."""
80       
81        ## Parameter details [units, min, max]
82        self.details = {}
83        self.details['scale'] = ['', None, None]
84        self.details['spacing'] = ['[A]', None, None]
85        self.details['deltaT'] = ['[A]', None, None]
86        self.details['deltaH'] = ['[A]', None, None]
87        self.details['sld_tail'] = ['[1/A^(2)]', None, None]
88        self.details['sld_head'] = ['[1/A^(2)]', None, None]
89        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
90        self.details['n_plates'] = ['', None, None]
91        self.details['caille'] = ['', None, None]
92        self.details['background'] = ['[1/cm]', None, None]
93
94        ## fittable parameters
95        self.fixed=['deltaT.width', 'deltaH.width', 'spacing.width']
96       
97        ## parameters with orientation
98        self.orientation_params =[]
99   
100    def clone(self):
101        """ Return a identical copy of self """
102        return self._clone(LamellarPSHGModel())   
103       
104    def __getstate__(self):
105        """
106        return object state for pickling and copying
107        """
108        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
109       
110        return self.__dict__, model_state
111       
112    def __setstate__(self, state):
113        """
114        create object from pickled state
115       
116        :param state: the state of the current model
117       
118        """
119       
120        self.__dict__, model_state = state
121        self.params = model_state['params']
122        self.dispersion = model_state['dispersion']
123        self.log = model_state['log']
124       
125   
126    def run(self, x=0.0):
127        """
128        Evaluate the model
129       
130        :param x: input q, or [q,phi]
131       
132        :return: scattering function P(q)
133       
134        """
135       
136        return CLamellarPSHGModel.run(self, x)
137   
138    def runXY(self, x=0.0):
139        """
140        Evaluate the model in cartesian coordinates
141       
142        :param x: input q, or [qx, qy]
143       
144        :return: scattering function P(q)
145       
146        """
147       
148        return CLamellarPSHGModel.runXY(self, x)
149       
150    def evalDistribution(self, x=[]):
151        """
152        Evaluate the model in cartesian coordinates
153       
154        :param x: input q[], or [qx[], qy[]]
155       
156        :return: scattering function P(q[])
157       
158        """
159        return CLamellarPSHGModel.evalDistribution(self, x)
160       
161    def calculate_ER(self):
162        """
163        Calculate the effective radius for P(q)*S(q)
164       
165        :return: the value of the effective radius
166       
167        """       
168        return CLamellarPSHGModel.calculate_ER(self)
169       
170    def set_dispersion(self, parameter, dispersion):
171        """
172        Set the dispersion object for a model parameter
173       
174        :param parameter: name of the parameter [string]
175        :param dispersion: dispersion object of type DispersionModel
176       
177        """
178        return CLamellarPSHGModel.set_dispersion(self, parameter, dispersion.cdisp)
179       
180   
181# End of file
Note: See TracBrowser for help on using the repository browser.