[34c3020] | 1 | #!/usr/bin/env python |
---|
| 2 | """ |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | """ |
---|
| 15 | |
---|
| 16 | """ Provide functionality for a C extension model |
---|
| 17 | |
---|
| 18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\lamellar.h |
---|
| 20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 21 | |
---|
| 22 | """ |
---|
| 23 | |
---|
| 24 | from sans.models.BaseComponent import BaseComponent |
---|
| 25 | from sans_extension.c_models import CLamellarModel |
---|
| 26 | import copy |
---|
| 27 | |
---|
| 28 | class LamellarModel(CLamellarModel, BaseComponent): |
---|
| 29 | """ Class that evaluates a LamellarModel model. |
---|
[fe9c19b4] | 30 | This file was auto-generated from ..\c_extensions\lamellar.h. |
---|
| 31 | Refer to that file and the structure it contains |
---|
| 32 | for details of the model. |
---|
| 33 | List of default parameters: |
---|
[34c3020] | 34 | scale = 1.0 |
---|
[975ec8e] | 35 | bi_thick = 50.0 [A] |
---|
[27972c1d] | 36 | sld_bi = 1e-006 [1/A^(2)] |
---|
| 37 | sld_sol = 6.3e-006 [1/A^(2)] |
---|
[34c3020] | 38 | background = 0.0 [1/cm] |
---|
| 39 | |
---|
| 40 | """ |
---|
| 41 | |
---|
| 42 | def __init__(self): |
---|
| 43 | """ Initialization """ |
---|
| 44 | |
---|
| 45 | # Initialize BaseComponent first, then sphere |
---|
| 46 | BaseComponent.__init__(self) |
---|
| 47 | CLamellarModel.__init__(self) |
---|
| 48 | |
---|
| 49 | ## Name of the model |
---|
| 50 | self.name = "LamellarModel" |
---|
| 51 | ## Model description |
---|
[b4679de] | 52 | self.description ="""[Dilute Lamellar Form Factor](from a lyotropic lamellar phase) |
---|
| 53 | I(q)= 2*pi*P(q)/(delta *q^(2)), where |
---|
[975ec8e] | 54 | P(q)=2*(contrast/q)^(2)*(1-cos(q*delta))^(2)) |
---|
| 55 | bi_thick = bilayer thickness |
---|
| 56 | sld_bi = SLD of bilayer |
---|
| 57 | sld_sol = SLD of solvent |
---|
| 58 | background = Incoherent background |
---|
| 59 | scale = scale factor |
---|
| 60 | """ |
---|
[34c3020] | 61 | |
---|
[fe9c19b4] | 62 | ## Parameter details [units, min, max] |
---|
[34c3020] | 63 | self.details = {} |
---|
| 64 | self.details['scale'] = ['', None, None] |
---|
[975ec8e] | 65 | self.details['bi_thick'] = ['[A]', None, None] |
---|
[27972c1d] | 66 | self.details['sld_bi'] = ['[1/A^(2)]', None, None] |
---|
| 67 | self.details['sld_sol'] = ['[1/A^(2)]', None, None] |
---|
[34c3020] | 68 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 69 | |
---|
[fe9c19b4] | 70 | ## fittable parameters |
---|
[b4679de] | 71 | self.fixed=[] |
---|
[34c3020] | 72 | |
---|
| 73 | ## parameters with orientation |
---|
| 74 | self.orientation_params =[] |
---|
| 75 | |
---|
| 76 | def clone(self): |
---|
| 77 | """ Return a identical copy of self """ |
---|
| 78 | return self._clone(LamellarModel()) |
---|
[fe9c19b4] | 79 | |
---|
| 80 | def __getstate__(self): |
---|
| 81 | """ return object state for pickling and copying """ |
---|
| 82 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 83 | |
---|
| 84 | return self.__dict__, model_state |
---|
| 85 | |
---|
| 86 | def __setstate__(self, state): |
---|
| 87 | """ create object from pickled state """ |
---|
| 88 | |
---|
| 89 | self.__dict__, model_state = state |
---|
| 90 | self.params = model_state['params'] |
---|
| 91 | self.dispersion = model_state['dispersion'] |
---|
| 92 | self.log = model_state['log'] |
---|
| 93 | |
---|
[34c3020] | 94 | |
---|
| 95 | def run(self, x = 0.0): |
---|
| 96 | """ Evaluate the model |
---|
| 97 | @param x: input q, or [q,phi] |
---|
| 98 | @return: scattering function P(q) |
---|
| 99 | """ |
---|
| 100 | |
---|
| 101 | return CLamellarModel.run(self, x) |
---|
| 102 | |
---|
| 103 | def runXY(self, x = 0.0): |
---|
| 104 | """ Evaluate the model in cartesian coordinates |
---|
| 105 | @param x: input q, or [qx, qy] |
---|
| 106 | @return: scattering function P(q) |
---|
| 107 | """ |
---|
| 108 | |
---|
| 109 | return CLamellarModel.runXY(self, x) |
---|
| 110 | |
---|
[f9a1279] | 111 | def evalDistribution(self, x = []): |
---|
[9bd69098] | 112 | """ Evaluate the model in cartesian coordinates |
---|
| 113 | @param x: input q[], or [qx[], qy[]] |
---|
| 114 | @return: scattering function P(q[]) |
---|
| 115 | """ |
---|
[f9a1279] | 116 | return CLamellarModel.evalDistribution(self, x) |
---|
[9bd69098] | 117 | |
---|
[5eb9154] | 118 | def calculate_ER(self): |
---|
| 119 | """ Calculate the effective radius for P(q)*S(q) |
---|
| 120 | @return: the value of the effective radius |
---|
| 121 | """ |
---|
| 122 | return CLamellarModel.calculate_ER(self) |
---|
| 123 | |
---|
[34c3020] | 124 | def set_dispersion(self, parameter, dispersion): |
---|
| 125 | """ |
---|
| 126 | Set the dispersion object for a model parameter |
---|
| 127 | @param parameter: name of the parameter [string] |
---|
| 128 | @dispersion: dispersion object of type DispersionModel |
---|
| 129 | """ |
---|
| 130 | return CLamellarModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | # End of file |
---|