[ec658c85] | 1 | #!/usr/bin/env python |
---|
| 2 | """ |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | """ |
---|
| 15 | |
---|
| 16 | """ Provide functionality for a C extension model |
---|
| 17 | |
---|
| 18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\fuzzysphere.h |
---|
| 20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 21 | |
---|
| 22 | """ |
---|
| 23 | |
---|
| 24 | from sans.models.BaseComponent import BaseComponent |
---|
| 25 | from sans_extension.c_models import CFuzzySphereModel |
---|
| 26 | import copy |
---|
| 27 | |
---|
| 28 | class FuzzySphereModel(CFuzzySphereModel, BaseComponent): |
---|
| 29 | """ Class that evaluates a FuzzySphereModel model. |
---|
| 30 | This file was auto-generated from ..\c_extensions\fuzzysphere.h. |
---|
| 31 | Refer to that file and the structure it contains |
---|
| 32 | for details of the model. |
---|
| 33 | List of default parameters: |
---|
| 34 | scale = 0.01 |
---|
| 35 | radius = 60.0 [A] |
---|
| 36 | fuzziness = 10.0 [A] |
---|
| 37 | sldSph = 1e-006 [1/A^(2)] |
---|
| 38 | sldSolv = 3e-006 [1/A^(2)] |
---|
| 39 | background = 0.001 [1/cm] |
---|
| 40 | |
---|
| 41 | """ |
---|
| 42 | |
---|
| 43 | def __init__(self): |
---|
| 44 | """ Initialization """ |
---|
| 45 | |
---|
| 46 | # Initialize BaseComponent first, then sphere |
---|
| 47 | BaseComponent.__init__(self) |
---|
| 48 | CFuzzySphereModel.__init__(self) |
---|
| 49 | |
---|
| 50 | ## Name of the model |
---|
| 51 | self.name = "FuzzySphereModel" |
---|
| 52 | ## Model description |
---|
| 53 | self.description =""" |
---|
| 54 | scale: scale factor times volume fraction, |
---|
| 55 | or just volume fraction for absolute scale data |
---|
| 56 | radius: radius of the solid sphere |
---|
| 57 | fuzziness = the STD of the height of fuzzy interfacial |
---|
| 58 | thickness (ie., so-called interfacial roughness) |
---|
| 59 | sldSph: the SLD of the sphere |
---|
| 60 | sldSolv: the SLD of the solvent |
---|
| 61 | background: incoherent background |
---|
| 62 | Note: By definition, this function works only when fuzziness << radius.""" |
---|
| 63 | |
---|
| 64 | ## Parameter details [units, min, max] |
---|
| 65 | self.details = {} |
---|
| 66 | self.details['scale'] = ['', None, None] |
---|
| 67 | self.details['radius'] = ['[A]', None, None] |
---|
| 68 | self.details['fuzziness'] = ['[A]', None, None] |
---|
| 69 | self.details['sldSph'] = ['[1/A^(2)]', None, None] |
---|
| 70 | self.details['sldSolv'] = ['[1/A^(2)]', None, None] |
---|
| 71 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 72 | |
---|
| 73 | ## fittable parameters |
---|
| 74 | self.fixed=['radius.width', 'fuzziness.width'] |
---|
| 75 | |
---|
| 76 | ## parameters with orientation |
---|
| 77 | self.orientation_params =[] |
---|
| 78 | |
---|
| 79 | def clone(self): |
---|
| 80 | """ Return a identical copy of self """ |
---|
| 81 | return self._clone(FuzzySphereModel()) |
---|
| 82 | |
---|
| 83 | def __getstate__(self): |
---|
| 84 | """ return object state for pickling and copying """ |
---|
| 85 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 86 | |
---|
| 87 | return self.__dict__, model_state |
---|
| 88 | |
---|
| 89 | def __setstate__(self, state): |
---|
| 90 | """ create object from pickled state """ |
---|
| 91 | |
---|
| 92 | self.__dict__, model_state = state |
---|
| 93 | self.params = model_state['params'] |
---|
| 94 | self.dispersion = model_state['dispersion'] |
---|
| 95 | self.log = model_state['log'] |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | def run(self, x = 0.0): |
---|
| 99 | """ Evaluate the model |
---|
| 100 | @param x: input q, or [q,phi] |
---|
| 101 | @return: scattering function P(q) |
---|
| 102 | """ |
---|
| 103 | |
---|
| 104 | return CFuzzySphereModel.run(self, x) |
---|
| 105 | |
---|
| 106 | def runXY(self, x = 0.0): |
---|
| 107 | """ Evaluate the model in cartesian coordinates |
---|
| 108 | @param x: input q, or [qx, qy] |
---|
| 109 | @return: scattering function P(q) |
---|
| 110 | """ |
---|
| 111 | |
---|
| 112 | return CFuzzySphereModel.runXY(self, x) |
---|
| 113 | |
---|
| 114 | def evalDistribution(self, x = []): |
---|
| 115 | """ Evaluate the model in cartesian coordinates |
---|
| 116 | @param x: input q[], or [qx[], qy[]] |
---|
| 117 | @return: scattering function P(q[]) |
---|
| 118 | """ |
---|
| 119 | return CFuzzySphereModel.evalDistribution(self, x) |
---|
| 120 | |
---|
| 121 | def calculate_ER(self): |
---|
| 122 | """ Calculate the effective radius for P(q)*S(q) |
---|
| 123 | @return: the value of the effective radius |
---|
| 124 | """ |
---|
| 125 | return CFuzzySphereModel.calculate_ER(self) |
---|
| 126 | |
---|
| 127 | def set_dispersion(self, parameter, dispersion): |
---|
| 128 | """ |
---|
| 129 | Set the dispersion object for a model parameter |
---|
| 130 | @param parameter: name of the parameter [string] |
---|
| 131 | @dispersion: dispersion object of type DispersionModel |
---|
| 132 | """ |
---|
| 133 | return CFuzzySphereModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | # End of file |
---|