1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | |
---|
4 | Provide F(x)= P(x)*S(x) + bkd |
---|
5 | Fractal as a BaseComponent model |
---|
6 | """ |
---|
7 | |
---|
8 | from sans.models.BaseComponent import BaseComponent |
---|
9 | import math |
---|
10 | from scipy.special import gamma |
---|
11 | |
---|
12 | class FractalModel(BaseComponent): |
---|
13 | |
---|
14 | """ |
---|
15 | Class that evaluates a Fractal function. |
---|
16 | |
---|
17 | F(x)= P(x)*S(x) + bkd |
---|
18 | The model has Seven parameters: |
---|
19 | scale = Volume fraction |
---|
20 | radius = Block radius |
---|
21 | fractal_dim = Fractal dimension |
---|
22 | corr_length = correlation Length |
---|
23 | block_sld = SDL block |
---|
24 | solvent_sld = SDL solvent |
---|
25 | background = background |
---|
26 | |
---|
27 | """ |
---|
28 | |
---|
29 | def __init__(self): |
---|
30 | """ Initialization """ |
---|
31 | |
---|
32 | # Initialize BaseComponent first, then sphere |
---|
33 | BaseComponent.__init__(self) |
---|
34 | |
---|
35 | ## Name of the model |
---|
36 | self.name = "Number Density Fractal" |
---|
37 | self.description=""" |
---|
38 | I(x)= P(x)*S(x) + bkd |
---|
39 | |
---|
40 | p(x)= scale* V^(2)*delta^(2)* F(x*radius)^(2) |
---|
41 | F(x) = 3*[sin(x)-x cos(x)]/x**3 |
---|
42 | |
---|
43 | The model has Seven parameters: |
---|
44 | scale = Volume fraction |
---|
45 | radius = Block radius |
---|
46 | fractal_dim = Fractal dimension |
---|
47 | corr_length = correlation Length |
---|
48 | block_sld = SDL block |
---|
49 | solvent_sld = SDL solvent |
---|
50 | background = background |
---|
51 | """ |
---|
52 | ## Define parameters |
---|
53 | self.params = {} |
---|
54 | self.params['scale'] = 0.05 |
---|
55 | self.params['radius'] = 5.0 |
---|
56 | self.params['fractal_dim'] = 2.0 |
---|
57 | self.params['corr_length'] = 100.0 |
---|
58 | self.params['block_sld'] = 2.0e-6 |
---|
59 | self.params['solvent_sld'] = 6.0e-6 |
---|
60 | self.params['background'] = 0.0 |
---|
61 | |
---|
62 | |
---|
63 | ## Parameter details [units, min, max] |
---|
64 | self.details = {} |
---|
65 | self.details['scale'] = ['', None, None] |
---|
66 | self.details['radius'] = ['[A]', None, None] |
---|
67 | self.details['fractal_dim'] = ['', 0, None] |
---|
68 | self.details['corr_length'] = ['[A]', None, None] |
---|
69 | self.details['block_sld'] = ['[1/A²]', None, None] |
---|
70 | self.details['solvent_sld'] = ['[1/A²]', None, None] |
---|
71 | self.details['background'] = ['[1/cm]', None, None] |
---|
72 | |
---|
73 | |
---|
74 | def _Fractal(self, x): |
---|
75 | """ |
---|
76 | Evaluate |
---|
77 | F(x) = p(x) * s(x) + bkd |
---|
78 | """ |
---|
79 | #if x<0 and self.params['fractal_dim']>0: |
---|
80 | # raise ValueError, "negative number cannot be raised to a fractional power" |
---|
81 | #if x==0 and self.params['fractal_dim']==0: |
---|
82 | # return 1+self.params['background'] |
---|
83 | #elif x<0 and self.params['fractal_dim']==0: |
---|
84 | # return 1e+32 |
---|
85 | #else: |
---|
86 | return self.params['background']+ self._scatterRanDom(x)* self._Block(x) |
---|
87 | |
---|
88 | |
---|
89 | def _Block(self,x): |
---|
90 | #if self.params['fractal_dim']<0: |
---|
91 | # self.params['fractal_dim']=-self.params['fractal_dim'] |
---|
92 | try: |
---|
93 | if x<0: |
---|
94 | x=-x |
---|
95 | if self.params['radius']<0: |
---|
96 | self.params['radius']=-self.params['radius'] |
---|
97 | |
---|
98 | if x==0 or self.params['radius']==0 : |
---|
99 | return 1e+32 |
---|
100 | elif self.params['fractal_dim']==0: |
---|
101 | return 1.0 + (math.sin((self.params['fractal_dim']-1.0) * math.atan(x * self.params['corr_length']))\ |
---|
102 | * self.params['fractal_dim'] * gamma(self.params['fractal_dim']-1.0))\ |
---|
103 | *( math.pow( 1.0 + 1.0/((x**2)*(self.params['corr_length']**2)),1/2.0)) |
---|
104 | elif self.params['corr_length']==0 or self.params['fractal_dim']==1: |
---|
105 | return 1.0 + (math.sin((self.params['fractal_dim']-1.0) * math.atan(x * self.params['corr_length']))\ |
---|
106 | * self.params['fractal_dim'] * gamma(self.params['fractal_dim']-1.0))\ |
---|
107 | /( math.pow( (x*self.params['radius']), self.params['fractal_dim'])) |
---|
108 | |
---|
109 | elif self.params['fractal_dim']<1: |
---|
110 | return 1.0 + (math.sin((self.params['fractal_dim']-1.0) * math.atan(x * self.params['corr_length']))\ |
---|
111 | * self.params['fractal_dim'] * gamma(self.params['fractal_dim']-1.0))\ |
---|
112 | /( math.pow( (x*self.params['radius']), self.params['fractal_dim']))*\ |
---|
113 | math.pow( 1.0 + 1.0/((x**2)*(self.params['corr_length']**2)),(1-self.params['fractal_dim'])/2.0) |
---|
114 | else: |
---|
115 | return 1.0 + (math.sin((self.params['fractal_dim']-1.0) * math.atan(x * self.params['corr_length']))\ |
---|
116 | * self.params['fractal_dim'] * gamma(self.params['fractal_dim']-1.0))\ |
---|
117 | / math.pow( (x*self.params['radius']), self.params['fractal_dim'])\ |
---|
118 | /math.pow( 1.0 + 1.0/((x**2)*(self.params['corr_length']**2)),(self.params['fractal_dim']-1.0)/2.0) |
---|
119 | except: |
---|
120 | return 1 # Need a real fix. |
---|
121 | def _Spherical(self,x): |
---|
122 | """ |
---|
123 | F(x) = 3*[sin(x)-xcos(x)]/x**3 |
---|
124 | """ |
---|
125 | if x==0: |
---|
126 | return 0 |
---|
127 | else: |
---|
128 | return 3.0*(math.sin(x)-x*math.cos(x))/(math.pow(x,3.0)) |
---|
129 | |
---|
130 | def _scatterRanDom(self,x): |
---|
131 | """ |
---|
132 | calculate p(x)= scale* V^(2)*delta^(2)* F(x*Radius)^(2) |
---|
133 | """ |
---|
134 | V =(4.0/3.0)*math.pi* math.pow(self.params['radius'],3.0) |
---|
135 | delta = self.params['block_sld']-self.params['solvent_sld'] |
---|
136 | |
---|
137 | return 1.0e8*self.params['scale']* V *(delta**2)*\ |
---|
138 | (self._Spherical(x*self.params['radius'])**2) |
---|
139 | |
---|
140 | def run(self, x = 0.0): |
---|
141 | """ Evaluate the model |
---|
142 | @param x: input q-value (float or [float, float] as [r, theta]) |
---|
143 | @return: (Fractal value) |
---|
144 | """ |
---|
145 | if x.__class__.__name__ == 'list': |
---|
146 | # Take absolute value of Q, since this model is really meant to |
---|
147 | # be defined in 1D for a given length of Q |
---|
148 | #qx = math.fabs(x[0]*math.cos(x[1])) |
---|
149 | #qy = math.fabs(x[0]*math.sin(x[1])) |
---|
150 | |
---|
151 | return self._Fractal(math.fabs(x[0])) |
---|
152 | elif x.__class__.__name__ == 'tuple': |
---|
153 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
154 | else: |
---|
155 | return self._Fractal(x) |
---|
156 | |
---|
157 | def runXY(self, x = 0.0): |
---|
158 | """ Evaluate the model |
---|
159 | @param x: input q-value (float or [float, float] as [qx, qy]) |
---|
160 | @return: Fractal value |
---|
161 | """ |
---|
162 | if x.__class__.__name__ == 'list': |
---|
163 | q = math.sqrt(x[0]**2 + x[1]**2) |
---|
164 | return self._Fractal(q) |
---|
165 | elif x.__class__.__name__ == 'tuple': |
---|
166 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
167 | else: |
---|
168 | return self._Fractal(x) |
---|