source: sasview/sansmodels/src/sans/models/FractalModel.py @ 7608cb5

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 7608cb5 was 96672c0, checked in by Gervaise Alina <gervyh@…>, 16 years ago

code for description modified

  • Property mode set to 100644
File size: 4.8 KB
Line 
1#!/usr/bin/env python
2"""
3   
4    Provide F(x)= P(x)*S(x) + bkd
5    Fractal as a BaseComponent model
6"""
7
8from sans.models.BaseComponent import BaseComponent
9import math
10from scipy.special import gamma
11
12class FractalModel(BaseComponent):
13   
14    """
15        Class that evaluates a Fractal function.
16       
17        F(x)= P(x)*S(x) + bkd
18        The model has Seven parameters:
19            scale        =  Volume fraction
20            radius       =  Block radius
21            fractal_dim  =  Fractal dimension
22            corr_length  =  correlation Length
23            block_sld    =  SDL block
24            solvent_sld  =  SDL solvent
25            background   =  background
26           
27    """
28       
29    def __init__(self):
30        """ Initialization """
31       
32        # Initialize BaseComponent first, then sphere
33        BaseComponent.__init__(self)
34       
35        ## Name of the model
36        self.name = "Number Density Fractal"
37        self.description="""
38        I(x)= P(x)*S(x) + bkd
39        p(x)= scale* V^(2)*delta^(2)* F(x*Radius)^(2)
40        F(x) = 3*[sin(x)-xcos(x)]/x**3
41        The model has Seven parameters:
42        scale        =  Volume fraction
43        radius       =  Block radius
44        fractal_dim  =  Fractal dimension
45        corr_length  =  correlation Length
46        block_sld    =  SDL block
47        solvent_sld  =  SDL solvent
48        background   =  background
49        """
50        ## Define parameters
51        self.params = {}
52        self.params['scale']       = 0.05
53        self.params['radius']      = 5.0
54        self.params['fractal_dim'] = 2.0
55        self.params['corr_length'] = 100.0
56        self.params['block_sld']   = 2.0e-6
57        self.params['solvent_sld'] = 6.0e-6
58        self.params['background']  = 0.0
59       
60
61        ## Parameter details [units, min, max]
62        self.details = {}
63        self.details['scale']       = ['',     None, None]
64        self.details['radius']      = ['A',    None, None]
65        self.details['fractal_dim'] = ['',       0,  None]
66        self.details['corr_length'] = ['A',    None, None]
67        self.details['block_sld']   = ['A-2',  None, None]
68        self.details['solvent_sld'] = ['A-2',  None, None]
69        self.details['background']  = ['cm-1', None, None]
70       
71               
72    def _Fractal(self, x):
73        """
74            Evaluate 
75            F(x) = p(x) * s(x) + bkd 
76        """
77        if x<0 and self.params['fractal_dim']>0:
78            raise ValueError, "negative number cannot be raised to a fractional power"
79
80        return self.params['background']+ self._scatterRanDom(x)* self._Block(x)
81
82   
83    def _Block(self,x):
84        return 1.0 + (math.sin((self.params['fractal_dim']-1.0) * math.atan(x * self.params['corr_length']))\
85             * self.params['fractal_dim'] * gamma(self.params['fractal_dim']-1.0))\
86           /( math.pow( (x*self.params['radius']), self.params['fractal_dim'])*\
87           math.pow( 1.0 + 1.0/((x**2)*(self.params['corr_length']**2)),(self.params['fractal_dim']-1.0)/2.0))   
88           
89    def _Spherical(self,x):
90        """
91            F(x) = 3*[sin(x)-xcos(x)]/x**3
92        """
93        return 3.0*(math.sin(x)-x*math.cos(x))/(math.pow(x,3.0))
94       
95    def _scatterRanDom(self,x):
96        """
97             calculate p(x)= scale* V^(2)*delta^(2)* F(x*Radius)^(2)
98        """
99        V =(4.0/3.0)*math.pi* math.pow(self.params['radius'],3.0) 
100        delta = self.params['block_sld']-self.params['solvent_sld']
101       
102        return 1.0e8*self.params['scale']* V *(delta**2)*\
103                (self._Spherical(x*self.params['radius'])**2)
104       
105    def run(self, x = 0.0):
106        """ Evaluate the model
107            @param x: input q-value (float or [float, float] as [r, theta])
108            @return: (Fractal value)
109        """
110        if x.__class__.__name__ == 'list':
111            # Take absolute value of Q, since this model is really meant to
112            # be defined in 1D for a given length of Q
113            #qx = math.fabs(x[0]*math.cos(x[1]))
114            #qy = math.fabs(x[0]*math.sin(x[1]))
115           
116            return self._Fractal(math.fabs(x[0]))
117        elif x.__class__.__name__ == 'tuple':
118            raise ValueError, "Tuples are not allowed as input to BaseComponent models"
119        else:
120            return self._Fractal(x)
121   
122    def runXY(self, x = 0.0):
123        """ Evaluate the model
124            @param x: input q-value (float or [float, float] as [qx, qy])
125            @return: Fractal value
126        """
127        if x.__class__.__name__ == 'list':
128            q = math.sqrt(x[0]**2 + x[1]**2)
129            return self._Fractal(q)
130        elif x.__class__.__name__ == 'tuple':
131            raise ValueError, "Tuples are not allowed as input to BaseComponent models"
132        else:
133            return self._Fractal(x)
Note: See TracBrowser for help on using the repository browser.