source: sasview/sansmodels/src/sans/models/EllipticalCylinderModel.py @ 18f2ca1

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 18f2ca1 was 35aface, checked in by Jae Cho <jhjcho@…>, 14 years ago

addede new models and attr. non_fittable

  • Property mode set to 100644
File size: 5.7 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\elliptical_cylinder.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CEllipticalCylinderModel
29import copy   
30   
31class EllipticalCylinderModel(CEllipticalCylinderModel, BaseComponent):
32    """
33    Class that evaluates a EllipticalCylinderModel model.
34    This file was auto-generated from ..\c_extensions\elliptical_cylinder.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         r_minor         = 20.0 [A]
40         r_ratio         = 1.5
41         length          = 400.0 [A]
42         sldCyl          = 4e-006 [1/A^(2)]
43         sldSolv         = 1e-006 [1/A^(2)]
44         background      = 0.0 [1/cm]
45         cyl_theta       = 1.57 [rad]
46         cyl_phi         = 0.0 [rad]
47         cyl_psi         = 0.0 [rad]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CEllipticalCylinderModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "EllipticalCylinderModel"
60        ## Model description
61        self.description =""" Model parameters: r_minor = the radius of minor axis of the cross section
62                r_ratio = the ratio of (r_major /r_minor >= 1)
63                length = the length of the cylinder
64                sldCyl = SLD of the cylinder
65                sldSolv = SLD of solvent -
66                background = incoherent background"""
67       
68        ## Parameter details [units, min, max]
69        self.details = {}
70        self.details['scale'] = ['', None, None]
71        self.details['r_minor'] = ['[A]', None, None]
72        self.details['r_ratio'] = ['', None, None]
73        self.details['length'] = ['[A]', None, None]
74        self.details['sldCyl'] = ['[1/A^(2)]', None, None]
75        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
76        self.details['background'] = ['[1/cm]', None, None]
77        self.details['cyl_theta'] = ['[rad]', None, None]
78        self.details['cyl_phi'] = ['[rad]', None, None]
79        self.details['cyl_psi'] = ['[rad]', None, None]
80
81        ## fittable parameters
82        self.fixed=['cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width', 'length.width', 'r_minor.width', 'r_ratio.width']
83       
84        ## non-fittable parameters
85        self.non_fittable=[]
86       
87        ## parameters with orientation
88        self.orientation_params =['cyl_phi', 'cyl_theta', 'cyl_psi', 'cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width']
89   
90    def clone(self):
91        """ Return a identical copy of self """
92        return self._clone(EllipticalCylinderModel())   
93       
94    def __getstate__(self):
95        """
96        return object state for pickling and copying
97        """
98        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
99       
100        return self.__dict__, model_state
101       
102    def __setstate__(self, state):
103        """
104        create object from pickled state
105       
106        :param state: the state of the current model
107       
108        """
109       
110        self.__dict__, model_state = state
111        self.params = model_state['params']
112        self.dispersion = model_state['dispersion']
113        self.log = model_state['log']
114       
115   
116    def run(self, x=0.0):
117        """
118        Evaluate the model
119       
120        :param x: input q, or [q,phi]
121       
122        :return: scattering function P(q)
123       
124        """
125       
126        return CEllipticalCylinderModel.run(self, x)
127   
128    def runXY(self, x=0.0):
129        """
130        Evaluate the model in cartesian coordinates
131       
132        :param x: input q, or [qx, qy]
133       
134        :return: scattering function P(q)
135       
136        """
137       
138        return CEllipticalCylinderModel.runXY(self, x)
139       
140    def evalDistribution(self, x=[]):
141        """
142        Evaluate the model in cartesian coordinates
143       
144        :param x: input q[], or [qx[], qy[]]
145       
146        :return: scattering function P(q[])
147       
148        """
149        return CEllipticalCylinderModel.evalDistribution(self, x)
150       
151    def calculate_ER(self):
152        """
153        Calculate the effective radius for P(q)*S(q)
154       
155        :return: the value of the effective radius
156       
157        """       
158        return CEllipticalCylinderModel.calculate_ER(self)
159       
160    def set_dispersion(self, parameter, dispersion):
161        """
162        Set the dispersion object for a model parameter
163       
164        :param parameter: name of the parameter [string]
165        :param dispersion: dispersion object of type DispersionModel
166       
167        """
168        return CEllipticalCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
169       
170   
171# End of file
Note: See TracBrowser for help on using the repository browser.