[ae3ce4e] | 1 | #!/usr/bin/env python |
---|
[95986b5] | 2 | |
---|
[79ac6f8] | 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
[95986b5] | 16 | |
---|
| 17 | |
---|
[79ac6f8] | 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
[ae3ce4e] | 20 | |
---|
[79ac6f8] | 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\elliptical_cylinder.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
[ae3ce4e] | 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CEllipticalCylinderModel |
---|
| 29 | import copy |
---|
| 30 | |
---|
| 31 | class EllipticalCylinderModel(CEllipticalCylinderModel, BaseComponent): |
---|
[79ac6f8] | 32 | """ |
---|
| 33 | Class that evaluates a EllipticalCylinderModel model. |
---|
| 34 | This file was auto-generated from ..\c_extensions\elliptical_cylinder.h. |
---|
| 35 | Refer to that file and the structure it contains |
---|
| 36 | for details of the model. |
---|
| 37 | List of default parameters: |
---|
[ae3ce4e] | 38 | scale = 1.0 |
---|
[1ed3834] | 39 | r_minor = 20.0 [A] |
---|
[0824909] | 40 | r_ratio = 1.5 |
---|
[1ed3834] | 41 | length = 400.0 [A] |
---|
[f10063e] | 42 | sldCyl = 4e-006 [1/A^(2)] |
---|
| 43 | sldSolv = 1e-006 [1/A^(2)] |
---|
[0824909] | 44 | background = 0.0 [1/cm] |
---|
| 45 | cyl_theta = 1.57 [rad] |
---|
| 46 | cyl_phi = 0.0 [rad] |
---|
| 47 | cyl_psi = 0.0 [rad] |
---|
[ae3ce4e] | 48 | |
---|
| 49 | """ |
---|
| 50 | |
---|
| 51 | def __init__(self): |
---|
| 52 | """ Initialization """ |
---|
| 53 | |
---|
| 54 | # Initialize BaseComponent first, then sphere |
---|
| 55 | BaseComponent.__init__(self) |
---|
| 56 | CEllipticalCylinderModel.__init__(self) |
---|
| 57 | |
---|
| 58 | ## Name of the model |
---|
| 59 | self.name = "EllipticalCylinderModel" |
---|
[836fe6e] | 60 | ## Model description |
---|
[7ad9887] | 61 | self.description =""" Model parameters: r_minor = the radius of minor axis of the cross section |
---|
| 62 | r_ratio = the ratio of (r_major /r_minor >= 1) |
---|
| 63 | length = the length of the cylinder |
---|
[f10063e] | 64 | sldCyl = SLD of the cylinder |
---|
| 65 | sldSolv = SLD of solvent - |
---|
[7ad9887] | 66 | background = incoherent background""" |
---|
[836fe6e] | 67 | |
---|
[fe9c19b4] | 68 | ## Parameter details [units, min, max] |
---|
[ae3ce4e] | 69 | self.details = {} |
---|
| 70 | self.details['scale'] = ['', None, None] |
---|
[1ed3834] | 71 | self.details['r_minor'] = ['[A]', None, None] |
---|
[0824909] | 72 | self.details['r_ratio'] = ['', None, None] |
---|
[1ed3834] | 73 | self.details['length'] = ['[A]', None, None] |
---|
[f10063e] | 74 | self.details['sldCyl'] = ['[1/A^(2)]', None, None] |
---|
| 75 | self.details['sldSolv'] = ['[1/A^(2)]', None, None] |
---|
[0824909] | 76 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 77 | self.details['cyl_theta'] = ['[rad]', None, None] |
---|
| 78 | self.details['cyl_phi'] = ['[rad]', None, None] |
---|
| 79 | self.details['cyl_psi'] = ['[rad]', None, None] |
---|
[836fe6e] | 80 | |
---|
[fe9c19b4] | 81 | ## fittable parameters |
---|
[975ec8e] | 82 | self.fixed=['cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width', 'length.width', 'r_minor.width', 'r_ratio.width'] |
---|
[25a608f5] | 83 | |
---|
[35aface] | 84 | ## non-fittable parameters |
---|
| 85 | self.non_fittable=[] |
---|
| 86 | |
---|
[25a608f5] | 87 | ## parameters with orientation |
---|
| 88 | self.orientation_params =['cyl_phi', 'cyl_theta', 'cyl_psi', 'cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width'] |
---|
[ae3ce4e] | 89 | |
---|
| 90 | def clone(self): |
---|
| 91 | """ Return a identical copy of self """ |
---|
[95986b5] | 92 | return self._clone(EllipticalCylinderModel()) |
---|
[fe9c19b4] | 93 | |
---|
| 94 | def __getstate__(self): |
---|
[79ac6f8] | 95 | """ |
---|
| 96 | return object state for pickling and copying |
---|
| 97 | """ |
---|
[fe9c19b4] | 98 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 99 | |
---|
| 100 | return self.__dict__, model_state |
---|
| 101 | |
---|
| 102 | def __setstate__(self, state): |
---|
[79ac6f8] | 103 | """ |
---|
| 104 | create object from pickled state |
---|
| 105 | |
---|
| 106 | :param state: the state of the current model |
---|
| 107 | |
---|
| 108 | """ |
---|
[fe9c19b4] | 109 | |
---|
| 110 | self.__dict__, model_state = state |
---|
| 111 | self.params = model_state['params'] |
---|
| 112 | self.dispersion = model_state['dispersion'] |
---|
| 113 | self.log = model_state['log'] |
---|
| 114 | |
---|
[ae3ce4e] | 115 | |
---|
[79ac6f8] | 116 | def run(self, x=0.0): |
---|
| 117 | """ |
---|
| 118 | Evaluate the model |
---|
| 119 | |
---|
| 120 | :param x: input q, or [q,phi] |
---|
| 121 | |
---|
| 122 | :return: scattering function P(q) |
---|
| 123 | |
---|
[ae3ce4e] | 124 | """ |
---|
| 125 | |
---|
| 126 | return CEllipticalCylinderModel.run(self, x) |
---|
| 127 | |
---|
[79ac6f8] | 128 | def runXY(self, x=0.0): |
---|
| 129 | """ |
---|
| 130 | Evaluate the model in cartesian coordinates |
---|
| 131 | |
---|
| 132 | :param x: input q, or [qx, qy] |
---|
| 133 | |
---|
| 134 | :return: scattering function P(q) |
---|
| 135 | |
---|
[ae3ce4e] | 136 | """ |
---|
| 137 | |
---|
| 138 | return CEllipticalCylinderModel.runXY(self, x) |
---|
[95986b5] | 139 | |
---|
[79ac6f8] | 140 | def evalDistribution(self, x=[]): |
---|
| 141 | """ |
---|
| 142 | Evaluate the model in cartesian coordinates |
---|
| 143 | |
---|
| 144 | :param x: input q[], or [qx[], qy[]] |
---|
| 145 | |
---|
| 146 | :return: scattering function P(q[]) |
---|
| 147 | |
---|
[9bd69098] | 148 | """ |
---|
[f9a1279] | 149 | return CEllipticalCylinderModel.evalDistribution(self, x) |
---|
[9bd69098] | 150 | |
---|
[5eb9154] | 151 | def calculate_ER(self): |
---|
[79ac6f8] | 152 | """ |
---|
| 153 | Calculate the effective radius for P(q)*S(q) |
---|
| 154 | |
---|
| 155 | :return: the value of the effective radius |
---|
| 156 | |
---|
[5eb9154] | 157 | """ |
---|
| 158 | return CEllipticalCylinderModel.calculate_ER(self) |
---|
| 159 | |
---|
[95986b5] | 160 | def set_dispersion(self, parameter, dispersion): |
---|
| 161 | """ |
---|
[79ac6f8] | 162 | Set the dispersion object for a model parameter |
---|
| 163 | |
---|
| 164 | :param parameter: name of the parameter [string] |
---|
| 165 | :param dispersion: dispersion object of type DispersionModel |
---|
| 166 | |
---|
[95986b5] | 167 | """ |
---|
| 168 | return CEllipticalCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 169 | |
---|
[ae3ce4e] | 170 | |
---|
| 171 | # End of file |
---|