source: sasview/sansmodels/src/sans/models/EllipticalCylinderModel.py @ 20905a0

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 20905a0 was 79ac6f8, checked in by Gervaise Alina <gervyh@…>, 14 years ago

working on documentation

  • Property mode set to 100644
File size: 5.6 KB
RevLine 
[ae3ce4e]1#!/usr/bin/env python
[95986b5]2
[79ac6f8]3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
[95986b5]16
17
[79ac6f8]18"""
19Provide functionality for a C extension model
[ae3ce4e]20
[79ac6f8]21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\elliptical_cylinder.h
23         AND RE-RUN THE GENERATOR SCRIPT
[ae3ce4e]24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CEllipticalCylinderModel
29import copy   
30   
31class EllipticalCylinderModel(CEllipticalCylinderModel, BaseComponent):
[79ac6f8]32    """
33    Class that evaluates a EllipticalCylinderModel model.
34    This file was auto-generated from ..\c_extensions\elliptical_cylinder.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
[ae3ce4e]38         scale           = 1.0
[1ed3834]39         r_minor         = 20.0 [A]
[0824909]40         r_ratio         = 1.5
[1ed3834]41         length          = 400.0 [A]
[f10063e]42         sldCyl          = 4e-006 [1/A^(2)]
43         sldSolv         = 1e-006 [1/A^(2)]
[0824909]44         background      = 0.0 [1/cm]
45         cyl_theta       = 1.57 [rad]
46         cyl_phi         = 0.0 [rad]
47         cyl_psi         = 0.0 [rad]
[ae3ce4e]48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CEllipticalCylinderModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "EllipticalCylinderModel"
[836fe6e]60        ## Model description
[7ad9887]61        self.description =""" Model parameters: r_minor = the radius of minor axis of the cross section
62                r_ratio = the ratio of (r_major /r_minor >= 1)
63                length = the length of the cylinder
[f10063e]64                sldCyl = SLD of the cylinder
65                sldSolv = SLD of solvent -
[7ad9887]66                background = incoherent background"""
[836fe6e]67       
[fe9c19b4]68        ## Parameter details [units, min, max]
[ae3ce4e]69        self.details = {}
70        self.details['scale'] = ['', None, None]
[1ed3834]71        self.details['r_minor'] = ['[A]', None, None]
[0824909]72        self.details['r_ratio'] = ['', None, None]
[1ed3834]73        self.details['length'] = ['[A]', None, None]
[f10063e]74        self.details['sldCyl'] = ['[1/A^(2)]', None, None]
75        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
[0824909]76        self.details['background'] = ['[1/cm]', None, None]
77        self.details['cyl_theta'] = ['[rad]', None, None]
78        self.details['cyl_phi'] = ['[rad]', None, None]
79        self.details['cyl_psi'] = ['[rad]', None, None]
[836fe6e]80
[fe9c19b4]81        ## fittable parameters
[975ec8e]82        self.fixed=['cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width', 'length.width', 'r_minor.width', 'r_ratio.width']
[25a608f5]83       
84        ## parameters with orientation
85        self.orientation_params =['cyl_phi', 'cyl_theta', 'cyl_psi', 'cyl_phi.width', 'cyl_theta.width', 'cyl_psi.width']
[ae3ce4e]86   
87    def clone(self):
88        """ Return a identical copy of self """
[95986b5]89        return self._clone(EllipticalCylinderModel())   
[fe9c19b4]90       
91    def __getstate__(self):
[79ac6f8]92        """
93        return object state for pickling and copying
94        """
[fe9c19b4]95        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
96       
97        return self.__dict__, model_state
98       
99    def __setstate__(self, state):
[79ac6f8]100        """
101        create object from pickled state
102       
103        :param state: the state of the current model
104       
105        """
[fe9c19b4]106       
107        self.__dict__, model_state = state
108        self.params = model_state['params']
109        self.dispersion = model_state['dispersion']
110        self.log = model_state['log']
111       
[ae3ce4e]112   
[79ac6f8]113    def run(self, x=0.0):
114        """
115        Evaluate the model
116       
117        :param x: input q, or [q,phi]
118       
119        :return: scattering function P(q)
120       
[ae3ce4e]121        """
122       
123        return CEllipticalCylinderModel.run(self, x)
124   
[79ac6f8]125    def runXY(self, x=0.0):
126        """
127        Evaluate the model in cartesian coordinates
128       
129        :param x: input q, or [qx, qy]
130       
131        :return: scattering function P(q)
132       
[ae3ce4e]133        """
134       
135        return CEllipticalCylinderModel.runXY(self, x)
[95986b5]136       
[79ac6f8]137    def evalDistribution(self, x=[]):
138        """
139        Evaluate the model in cartesian coordinates
140       
141        :param x: input q[], or [qx[], qy[]]
142       
143        :return: scattering function P(q[])
144       
[9bd69098]145        """
[f9a1279]146        return CEllipticalCylinderModel.evalDistribution(self, x)
[9bd69098]147       
[5eb9154]148    def calculate_ER(self):
[79ac6f8]149        """
150        Calculate the effective radius for P(q)*S(q)
151       
152        :return: the value of the effective radius
153       
[5eb9154]154        """       
155        return CEllipticalCylinderModel.calculate_ER(self)
156       
[95986b5]157    def set_dispersion(self, parameter, dispersion):
158        """
[79ac6f8]159        Set the dispersion object for a model parameter
160       
161        :param parameter: name of the parameter [string]
162        :param dispersion: dispersion object of type DispersionModel
163       
[95986b5]164        """
165        return CEllipticalCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
166       
[ae3ce4e]167   
168# End of file
Note: See TracBrowser for help on using the repository browser.