source: sasview/sansmodels/src/sans/models/EllipsoidModel.py @ 8a6d4af

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 8a6d4af was f9bf661, checked in by Jae Cho <jhjcho@…>, 15 years ago

updated documents

  • Property mode set to 100644
File size: 4.5 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\ellipsoid.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CEllipsoidModel
26import copy   
27   
28class EllipsoidModel(CEllipsoidModel, BaseComponent):
29    """ Class that evaluates a EllipsoidModel model.
30        This file was auto-generated from ..\c_extensions\ellipsoid.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         radius_a        = 20.0 [A]
36         radius_b        = 400.0 [A]
37         contrast        = 3e-006 [1/A²]
38         background      = 0.0 [1/cm]
39         axis_theta      = 1.57 [rad]
40         axis_phi        = 0.0 [rad]
41
42    """
43       
44    def __init__(self):
45        """ Initialization """
46       
47        # Initialize BaseComponent first, then sphere
48        BaseComponent.__init__(self)
49        CEllipsoidModel.__init__(self)
50       
51        ## Name of the model
52        self.name = "EllipsoidModel"
53        ## Model description
54        self.description =""""P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(scatter_sld
55                - scatter_solvent)*V*[sin(q*r(Ra,Rb,alpha))
56                -q*r*cos(qr(Ra,Rb,alpha))]
57                /[qr(Ra,Rb,alpha)]^(3)"
58               
59                r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2)
60                + Ra^(2)*(cos(alpha))^(2)]^(1/2)
61               
62                scatter_sld: SLD of the scatter
63                solvent_sld: SLD of the solvent
64                contrast: SLD difference between scatter
65                and solvent
66                V: volune of the Eliipsoid
67                Ra: radius along the rotation axis
68                of the Ellipsoid
69                Rb: radius perpendicular to the
70                rotation axis of the ellipsoid"""
71       
72                ## Parameter details [units, min, max]
73        self.details = {}
74        self.details['scale'] = ['', None, None]
75        self.details['radius_a'] = ['[A]', None, None]
76        self.details['radius_b'] = ['[A]', None, None]
77        self.details['contrast'] = ['[1/A²]', None, None]
78        self.details['background'] = ['[1/cm]', None, None]
79        self.details['axis_theta'] = ['[rad]', None, None]
80        self.details['axis_phi'] = ['[rad]', None, None]
81
82                ## fittable parameters
83        self.fixed=['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width']
84       
85        ## parameters with orientation
86        self.orientation_params =['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta']
87   
88    def clone(self):
89        """ Return a identical copy of self """
90        return self._clone(EllipsoidModel())   
91   
92    def run(self, x = 0.0):
93        """ Evaluate the model
94            @param x: input q, or [q,phi]
95            @return: scattering function P(q)
96        """
97       
98        return CEllipsoidModel.run(self, x)
99   
100    def runXY(self, x = 0.0):
101        """ Evaluate the model in cartesian coordinates
102            @param x: input q, or [qx, qy]
103            @return: scattering function P(q)
104        """
105       
106        return CEllipsoidModel.runXY(self, x)
107       
108    def evalDistribition(self, x = []):
109        """ Evaluate the model in cartesian coordinates
110            @param x: input q[], or [qx[], qy[]]
111            @return: scattering function P(q[])
112        """
113        return CEllipsoidModel.evalDistribition(self, x)
114       
115    def calculate_ER(self):
116        """ Calculate the effective radius for P(q)*S(q)
117            @return: the value of the effective radius
118        """       
119        return CEllipsoidModel.calculate_ER(self)
120       
121    def set_dispersion(self, parameter, dispersion):
122        """
123            Set the dispersion object for a model parameter
124            @param parameter: name of the parameter [string]
125            @dispersion: dispersion object of type DispersionModel
126        """
127        return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp)
128       
129   
130# End of file
Note: See TracBrowser for help on using the repository browser.