source: sasview/sansmodels/src/sans/models/EllipsoidModel.py @ e59da79

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since e59da79 was f10063e, checked in by Jae Cho <jhjcho@…>, 15 years ago

Updated the definition of SLD params according to new libigor functions

  • Property mode set to 100644
File size: 5.2 KB
RevLine 
[ae3ce4e]1#!/usr/bin/env python
[95986b5]2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
[ae3ce4e]16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
[836fe6e]19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\ellipsoid.h
[ae3ce4e]20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CEllipsoidModel
26import copy   
27   
28class EllipsoidModel(CEllipsoidModel, BaseComponent):
29    """ Class that evaluates a EllipsoidModel model.
[fe9c19b4]30        This file was auto-generated from ..\c_extensions\ellipsoid.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
[ae3ce4e]34         scale           = 1.0
[1ed3834]35         radius_a        = 20.0 [A]
36         radius_b        = 400.0 [A]
[f10063e]37         sldEll          = 4e-006 [1/A^(2)]
38         sldSolv         = 1e-006 [1/A^(2)]
[0824909]39         background      = 0.0 [1/cm]
40         axis_theta      = 1.57 [rad]
41         axis_phi        = 0.0 [rad]
[ae3ce4e]42
43    """
44       
45    def __init__(self):
46        """ Initialization """
47       
48        # Initialize BaseComponent first, then sphere
49        BaseComponent.__init__(self)
50        CEllipsoidModel.__init__(self)
51       
52        ## Name of the model
53        self.name = "EllipsoidModel"
[836fe6e]54        ## Model description
[f10063e]55        self.description =""""P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(sld_ell
56                - sld_solvent)*V*[sin(q*r(Ra,Rb,alpha))
[1ed3834]57                -q*r*cos(qr(Ra,Rb,alpha))]
[9316609]58                /[qr(Ra,Rb,alpha)]^(3)"
[1ed3834]59               
[0824909]60                r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2)
61                + Ra^(2)*(cos(alpha))^(2)]^(1/2)
[1ed3834]62               
63                scatter_sld: SLD of the scatter
64                solvent_sld: SLD of the solvent
[f10063e]65                sldEll: SLD of ellipsoid
66                sldSolv: SLD of solvent
[9316609]67                V: volune of the Eliipsoid
[1ed3834]68                Ra: radius along the rotation axis
69                of the Ellipsoid
70                Rb: radius perpendicular to the
71                rotation axis of the ellipsoid"""
[836fe6e]72       
[fe9c19b4]73        ## Parameter details [units, min, max]
[ae3ce4e]74        self.details = {}
75        self.details['scale'] = ['', None, None]
[1ed3834]76        self.details['radius_a'] = ['[A]', None, None]
77        self.details['radius_b'] = ['[A]', None, None]
[f10063e]78        self.details['sldEll'] = ['[1/A^(2)]', None, None]
79        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
[0824909]80        self.details['background'] = ['[1/cm]', None, None]
81        self.details['axis_theta'] = ['[rad]', None, None]
82        self.details['axis_phi'] = ['[rad]', None, None]
[836fe6e]83
[fe9c19b4]84        ## fittable parameters
[25a608f5]85        self.fixed=['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width']
86       
87        ## parameters with orientation
88        self.orientation_params =['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta']
[ae3ce4e]89   
90    def clone(self):
91        """ Return a identical copy of self """
[95986b5]92        return self._clone(EllipsoidModel())   
[fe9c19b4]93       
94    def __getstate__(self):
95        """ return object state for pickling and copying """
96        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
97       
98        return self.__dict__, model_state
99       
100    def __setstate__(self, state):
101        """ create object from pickled state """
102       
103        self.__dict__, model_state = state
104        self.params = model_state['params']
105        self.dispersion = model_state['dispersion']
106        self.log = model_state['log']
107       
[ae3ce4e]108   
109    def run(self, x = 0.0):
110        """ Evaluate the model
111            @param x: input q, or [q,phi]
112            @return: scattering function P(q)
113        """
114       
115        return CEllipsoidModel.run(self, x)
116   
117    def runXY(self, x = 0.0):
118        """ Evaluate the model in cartesian coordinates
119            @param x: input q, or [qx, qy]
120            @return: scattering function P(q)
121        """
122       
123        return CEllipsoidModel.runXY(self, x)
[95986b5]124       
[f9a1279]125    def evalDistribution(self, x = []):
[9bd69098]126        """ Evaluate the model in cartesian coordinates
127            @param x: input q[], or [qx[], qy[]]
128            @return: scattering function P(q[])
129        """
[f9a1279]130        return CEllipsoidModel.evalDistribution(self, x)
[9bd69098]131       
[5eb9154]132    def calculate_ER(self):
133        """ Calculate the effective radius for P(q)*S(q)
134            @return: the value of the effective radius
135        """       
136        return CEllipsoidModel.calculate_ER(self)
137       
[95986b5]138    def set_dispersion(self, parameter, dispersion):
139        """
140            Set the dispersion object for a model parameter
141            @param parameter: name of the parameter [string]
142            @dispersion: dispersion object of type DispersionModel
143        """
144        return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp)
145       
[ae3ce4e]146   
147# End of file
Note: See TracBrowser for help on using the repository browser.