[ae3ce4e] | 1 | #!/usr/bin/env python |
---|
[95986b5] | 2 | |
---|
[79ac6f8] | 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
[95986b5] | 16 | |
---|
| 17 | |
---|
[79ac6f8] | 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
[ae3ce4e] | 20 | |
---|
[79ac6f8] | 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\ellipsoid.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
[ae3ce4e] | 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CEllipsoidModel |
---|
| 29 | import copy |
---|
[96656e3] | 30 | |
---|
| 31 | def create_EllipsoidModel(): |
---|
| 32 | obj = EllipsoidModel() |
---|
| 33 | #CEllipsoidModel.__init__(obj) is called by EllipsoidModel constructor |
---|
| 34 | return obj |
---|
| 35 | |
---|
[ae3ce4e] | 36 | class EllipsoidModel(CEllipsoidModel, BaseComponent): |
---|
[79ac6f8] | 37 | """ |
---|
| 38 | Class that evaluates a EllipsoidModel model. |
---|
| 39 | This file was auto-generated from ..\c_extensions\ellipsoid.h. |
---|
| 40 | Refer to that file and the structure it contains |
---|
| 41 | for details of the model. |
---|
| 42 | List of default parameters: |
---|
[ae3ce4e] | 43 | scale = 1.0 |
---|
[1ed3834] | 44 | radius_a = 20.0 [A] |
---|
| 45 | radius_b = 400.0 [A] |
---|
[f10063e] | 46 | sldEll = 4e-006 [1/A^(2)] |
---|
| 47 | sldSolv = 1e-006 [1/A^(2)] |
---|
[0824909] | 48 | background = 0.0 [1/cm] |
---|
[4628e31] | 49 | axis_theta = 90.0 [deg] |
---|
| 50 | axis_phi = 0.0 [deg] |
---|
[ae3ce4e] | 51 | |
---|
| 52 | """ |
---|
| 53 | |
---|
| 54 | def __init__(self): |
---|
| 55 | """ Initialization """ |
---|
| 56 | |
---|
| 57 | # Initialize BaseComponent first, then sphere |
---|
| 58 | BaseComponent.__init__(self) |
---|
[96656e3] | 59 | #apply(CEllipsoidModel.__init__, (self,)) |
---|
[ae3ce4e] | 60 | CEllipsoidModel.__init__(self) |
---|
| 61 | |
---|
| 62 | ## Name of the model |
---|
| 63 | self.name = "EllipsoidModel" |
---|
[836fe6e] | 64 | ## Model description |
---|
[f10063e] | 65 | self.description =""""P(q.alpha)= scale*f(q)^(2)+ bkg, where f(q)= 3*(sld_ell |
---|
| 66 | - sld_solvent)*V*[sin(q*r(Ra,Rb,alpha)) |
---|
[1ed3834] | 67 | -q*r*cos(qr(Ra,Rb,alpha))] |
---|
[9316609] | 68 | /[qr(Ra,Rb,alpha)]^(3)" |
---|
[1ed3834] | 69 | |
---|
[0824909] | 70 | r(Ra,Rb,alpha)= [Rb^(2)*(sin(alpha))^(2) |
---|
| 71 | + Ra^(2)*(cos(alpha))^(2)]^(1/2) |
---|
[1ed3834] | 72 | |
---|
| 73 | scatter_sld: SLD of the scatter |
---|
| 74 | solvent_sld: SLD of the solvent |
---|
[f10063e] | 75 | sldEll: SLD of ellipsoid |
---|
| 76 | sldSolv: SLD of solvent |
---|
[9316609] | 77 | V: volune of the Eliipsoid |
---|
[1ed3834] | 78 | Ra: radius along the rotation axis |
---|
| 79 | of the Ellipsoid |
---|
| 80 | Rb: radius perpendicular to the |
---|
| 81 | rotation axis of the ellipsoid""" |
---|
[836fe6e] | 82 | |
---|
[fe9c19b4] | 83 | ## Parameter details [units, min, max] |
---|
[ae3ce4e] | 84 | self.details = {} |
---|
| 85 | self.details['scale'] = ['', None, None] |
---|
[1ed3834] | 86 | self.details['radius_a'] = ['[A]', None, None] |
---|
| 87 | self.details['radius_b'] = ['[A]', None, None] |
---|
[f10063e] | 88 | self.details['sldEll'] = ['[1/A^(2)]', None, None] |
---|
| 89 | self.details['sldSolv'] = ['[1/A^(2)]', None, None] |
---|
[0824909] | 90 | self.details['background'] = ['[1/cm]', None, None] |
---|
[4628e31] | 91 | self.details['axis_theta'] = ['[deg]', None, None] |
---|
| 92 | self.details['axis_phi'] = ['[deg]', None, None] |
---|
[836fe6e] | 93 | |
---|
[fe9c19b4] | 94 | ## fittable parameters |
---|
[25a608f5] | 95 | self.fixed=['axis_phi.width', 'axis_theta.width', 'radius_a.width', 'radius_b.width', 'length.width', 'r_minor.width'] |
---|
| 96 | |
---|
[35aface] | 97 | ## non-fittable parameters |
---|
[96656e3] | 98 | self.non_fittable = [] |
---|
[35aface] | 99 | |
---|
[25a608f5] | 100 | ## parameters with orientation |
---|
[96656e3] | 101 | self.orientation_params = ['axis_phi.width', 'axis_theta.width', 'axis_phi', 'axis_theta'] |
---|
[c7a7e1b] | 102 | |
---|
| 103 | def __setstate__(self, state): |
---|
| 104 | """ |
---|
| 105 | restore the state of a model from pickle |
---|
| 106 | """ |
---|
| 107 | self.__dict__, self.params, self.dispersion = state |
---|
| 108 | |
---|
[96656e3] | 109 | def __reduce_ex__(self, proto): |
---|
[79ac6f8] | 110 | """ |
---|
[96656e3] | 111 | Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of |
---|
| 112 | c model. |
---|
[79ac6f8] | 113 | """ |
---|
[c7a7e1b] | 114 | state = (self.__dict__, self.params, self.dispersion) |
---|
| 115 | return (create_EllipsoidModel,tuple(), state, None, None) |
---|
[fe9c19b4] | 116 | |
---|
[96656e3] | 117 | def clone(self): |
---|
| 118 | """ Return a identical copy of self """ |
---|
| 119 | return self._clone(EllipsoidModel()) |
---|
[fe9c19b4] | 120 | |
---|
[ae3ce4e] | 121 | |
---|
[79ac6f8] | 122 | def run(self, x=0.0): |
---|
| 123 | """ |
---|
| 124 | Evaluate the model |
---|
| 125 | |
---|
| 126 | :param x: input q, or [q,phi] |
---|
| 127 | |
---|
| 128 | :return: scattering function P(q) |
---|
| 129 | |
---|
[ae3ce4e] | 130 | """ |
---|
| 131 | |
---|
| 132 | return CEllipsoidModel.run(self, x) |
---|
| 133 | |
---|
[79ac6f8] | 134 | def runXY(self, x=0.0): |
---|
| 135 | """ |
---|
| 136 | Evaluate the model in cartesian coordinates |
---|
| 137 | |
---|
| 138 | :param x: input q, or [qx, qy] |
---|
| 139 | |
---|
| 140 | :return: scattering function P(q) |
---|
| 141 | |
---|
[ae3ce4e] | 142 | """ |
---|
| 143 | |
---|
| 144 | return CEllipsoidModel.runXY(self, x) |
---|
[95986b5] | 145 | |
---|
[79ac6f8] | 146 | def evalDistribution(self, x=[]): |
---|
| 147 | """ |
---|
| 148 | Evaluate the model in cartesian coordinates |
---|
| 149 | |
---|
| 150 | :param x: input q[], or [qx[], qy[]] |
---|
| 151 | |
---|
| 152 | :return: scattering function P(q[]) |
---|
| 153 | |
---|
[9bd69098] | 154 | """ |
---|
[f9a1279] | 155 | return CEllipsoidModel.evalDistribution(self, x) |
---|
[9bd69098] | 156 | |
---|
[5eb9154] | 157 | def calculate_ER(self): |
---|
[79ac6f8] | 158 | """ |
---|
| 159 | Calculate the effective radius for P(q)*S(q) |
---|
| 160 | |
---|
| 161 | :return: the value of the effective radius |
---|
| 162 | |
---|
[5eb9154] | 163 | """ |
---|
| 164 | return CEllipsoidModel.calculate_ER(self) |
---|
| 165 | |
---|
[95986b5] | 166 | def set_dispersion(self, parameter, dispersion): |
---|
| 167 | """ |
---|
[79ac6f8] | 168 | Set the dispersion object for a model parameter |
---|
| 169 | |
---|
| 170 | :param parameter: name of the parameter [string] |
---|
| 171 | :param dispersion: dispersion object of type DispersionModel |
---|
| 172 | |
---|
[95986b5] | 173 | """ |
---|
| 174 | return CEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 175 | |
---|
[ae3ce4e] | 176 | |
---|
| 177 | # End of file |
---|