source: sasview/sansmodels/src/sans/models/DiamEllipFunc.py @ a1f2002

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since a1f2002 was 35aface, checked in by Jae Cho <jhjcho@…>, 14 years ago

addede new models and attr. non_fittable

  • Property mode set to 100644
File size: 4.7 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\DiamEllip.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CDiamEllipFunc
29import copy   
30   
31class DiamEllipFunc(CDiamEllipFunc, BaseComponent):
32    """
33    Class that evaluates a DiamEllipFunc model.
34    This file was auto-generated from ..\c_extensions\DiamEllip.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         radius_a        = 20.0 A
39         radius_b        = 400.0 A
40
41    """
42       
43    def __init__(self):
44        """ Initialization """
45       
46        # Initialize BaseComponent first, then sphere
47        BaseComponent.__init__(self)
48        CDiamEllipFunc.__init__(self)
49       
50        ## Name of the model
51        self.name = "DiamEllipFunc"
52        ## Model description
53        self.description ="""To calculate the 2nd virial coefficient for
54                the non-spherical object, then find the
55                radius of sphere that has this value of
56                virial coefficient:
57                radius_a = polar radius,
58                radius_b = equatorial radius;
59                radius_a > radius_b: Prolate spheroid,
60                radius_a < radius_b: Oblate spheroid."""
61       
62        ## Parameter details [units, min, max]
63        self.details = {}
64        self.details['radius_a'] = ['A', None, None]
65        self.details['radius_b'] = ['A', None, None]
66
67        ## fittable parameters
68        self.fixed=['radius_a.width', 'radius_b.width']
69       
70        ## non-fittable parameters
71        self.non_fittable=[]
72       
73        ## parameters with orientation
74        self.orientation_params =[]
75   
76    def clone(self):
77        """ Return a identical copy of self """
78        return self._clone(DiamEllipFunc())   
79       
80    def __getstate__(self):
81        """
82        return object state for pickling and copying
83        """
84        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
85       
86        return self.__dict__, model_state
87       
88    def __setstate__(self, state):
89        """
90        create object from pickled state
91       
92        :param state: the state of the current model
93       
94        """
95       
96        self.__dict__, model_state = state
97        self.params = model_state['params']
98        self.dispersion = model_state['dispersion']
99        self.log = model_state['log']
100       
101   
102    def run(self, x=0.0):
103        """
104        Evaluate the model
105       
106        :param x: input q, or [q,phi]
107       
108        :return: scattering function P(q)
109       
110        """
111       
112        return CDiamEllipFunc.run(self, x)
113   
114    def runXY(self, x=0.0):
115        """
116        Evaluate the model in cartesian coordinates
117       
118        :param x: input q, or [qx, qy]
119       
120        :return: scattering function P(q)
121       
122        """
123       
124        return CDiamEllipFunc.runXY(self, x)
125       
126    def evalDistribution(self, x=[]):
127        """
128        Evaluate the model in cartesian coordinates
129       
130        :param x: input q[], or [qx[], qy[]]
131       
132        :return: scattering function P(q[])
133       
134        """
135        return CDiamEllipFunc.evalDistribution(self, x)
136       
137    def calculate_ER(self):
138        """
139        Calculate the effective radius for P(q)*S(q)
140       
141        :return: the value of the effective radius
142       
143        """       
144        return CDiamEllipFunc.calculate_ER(self)
145       
146    def set_dispersion(self, parameter, dispersion):
147        """
148        Set the dispersion object for a model parameter
149       
150        :param parameter: name of the parameter [string]
151        :param dispersion: dispersion object of type DispersionModel
152       
153        """
154        return CDiamEllipFunc.set_dispersion(self, parameter, dispersion.cdisp)
155       
156   
157# End of file
Note: See TracBrowser for help on using the repository browser.