source: sasview/sansmodels/src/sans/models/CylinderModel.py @ 339ce67

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 339ce67 was 35aface, checked in by Jae Cho <jhjcho@…>, 14 years ago

addede new models and attr. non_fittable

  • Property mode set to 100644
File size: 5.5 KB
RevLine 
[ae3ce4e]1#!/usr/bin/env python
[95986b5]2
[79ac6f8]3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
[95986b5]16
17
[79ac6f8]18"""
19Provide functionality for a C extension model
[ae3ce4e]20
[79ac6f8]21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\cylinder.h
23         AND RE-RUN THE GENERATOR SCRIPT
[ae3ce4e]24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CCylinderModel
29import copy   
30   
31class CylinderModel(CCylinderModel, BaseComponent):
[79ac6f8]32    """
33    Class that evaluates a CylinderModel model.
34    This file was auto-generated from ..\c_extensions\cylinder.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
[ae3ce4e]38         scale           = 1.0
[1ed3834]39         radius          = 20.0 [A]
40         length          = 400.0 [A]
[f10063e]41         sldCyl          = 4e-006 [1/A^(2)]
42         sldSolv         = 1e-006 [1/A^(2)]
[0824909]43         background      = 0.0 [1/cm]
44         cyl_theta       = 1.0 [rad]
45         cyl_phi         = 1.0 [rad]
[ae3ce4e]46
47    """
48       
49    def __init__(self):
50        """ Initialization """
51       
52        # Initialize BaseComponent first, then sphere
53        BaseComponent.__init__(self)
54        CCylinderModel.__init__(self)
55       
56        ## Name of the model
57        self.name = "CylinderModel"
[836fe6e]58        ## Model description
[f10063e]59        self.description =""" f(q)= 2*(sldCyl - sldSolv)*V*sin(qLcos(alpha/2))
[1ed3834]60                /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)]
61               
62                P(q,alpha)= scale/V*f(q)^(2)+bkg
[9316609]63                V: Volume of the cylinder
64                R: Radius of the cylinder
65                L: Length of the cylinder
66                J1: The bessel function
[1ed3834]67                alpha: angle betweenthe axis of the
68                cylinder and the q-vector for 1D
69                :the ouput is P(q)=scale/V*integral
70                from pi/2 to zero of...
[0824909]71                f(q)^(2)*sin(alpha)*dalpha+ bkg"""
[836fe6e]72       
[fe9c19b4]73        ## Parameter details [units, min, max]
[ae3ce4e]74        self.details = {}
75        self.details['scale'] = ['', None, None]
[1ed3834]76        self.details['radius'] = ['[A]', None, None]
77        self.details['length'] = ['[A]', None, None]
[f10063e]78        self.details['sldCyl'] = ['[1/A^(2)]', None, None]
79        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
[0824909]80        self.details['background'] = ['[1/cm]', None, None]
81        self.details['cyl_theta'] = ['[rad]', None, None]
82        self.details['cyl_phi'] = ['[rad]', None, None]
[836fe6e]83
[fe9c19b4]84        ## fittable parameters
[836fe6e]85        self.fixed=['cyl_phi.width', 'cyl_theta.width', 'length.width', 'radius.width']
[25a608f5]86       
[35aface]87        ## non-fittable parameters
88        self.non_fittable=[]
89       
[25a608f5]90        ## parameters with orientation
91        self.orientation_params =['cyl_phi', 'cyl_theta', 'cyl_phi.width', 'cyl_theta.width']
[ae3ce4e]92   
93    def clone(self):
94        """ Return a identical copy of self """
[95986b5]95        return self._clone(CylinderModel())   
[fe9c19b4]96       
97    def __getstate__(self):
[79ac6f8]98        """
99        return object state for pickling and copying
100        """
[fe9c19b4]101        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
102       
103        return self.__dict__, model_state
104       
105    def __setstate__(self, state):
[79ac6f8]106        """
107        create object from pickled state
108       
109        :param state: the state of the current model
110       
111        """
[fe9c19b4]112       
113        self.__dict__, model_state = state
114        self.params = model_state['params']
115        self.dispersion = model_state['dispersion']
116        self.log = model_state['log']
117       
[ae3ce4e]118   
[79ac6f8]119    def run(self, x=0.0):
120        """
121        Evaluate the model
122       
123        :param x: input q, or [q,phi]
124       
125        :return: scattering function P(q)
126       
[ae3ce4e]127        """
128       
129        return CCylinderModel.run(self, x)
130   
[79ac6f8]131    def runXY(self, x=0.0):
132        """
133        Evaluate the model in cartesian coordinates
134       
135        :param x: input q, or [qx, qy]
136       
137        :return: scattering function P(q)
138       
[ae3ce4e]139        """
140       
141        return CCylinderModel.runXY(self, x)
[95986b5]142       
[79ac6f8]143    def evalDistribution(self, x=[]):
144        """
145        Evaluate the model in cartesian coordinates
146       
147        :param x: input q[], or [qx[], qy[]]
148       
149        :return: scattering function P(q[])
150       
[9bd69098]151        """
[f9a1279]152        return CCylinderModel.evalDistribution(self, x)
[9bd69098]153       
[5eb9154]154    def calculate_ER(self):
[79ac6f8]155        """
156        Calculate the effective radius for P(q)*S(q)
157       
158        :return: the value of the effective radius
159       
[5eb9154]160        """       
161        return CCylinderModel.calculate_ER(self)
162       
[95986b5]163    def set_dispersion(self, parameter, dispersion):
164        """
[79ac6f8]165        Set the dispersion object for a model parameter
166       
167        :param parameter: name of the parameter [string]
168        :param dispersion: dispersion object of type DispersionModel
169       
[95986b5]170        """
171        return CCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
172       
[ae3ce4e]173   
174# End of file
Note: See TracBrowser for help on using the repository browser.