source: sasview/sansmodels/src/sans/models/CoreShellEllipsoidModel.py @ d734a3b1

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since d734a3b1 was f10063e, checked in by Jae Cho <jhjcho@…>, 14 years ago

Updated the definition of SLD params according to new libigor functions

  • Property mode set to 100644
File size: 5.9 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\spheroid.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CCoreShellEllipsoidModel
26import copy   
27   
28class CoreShellEllipsoidModel(CCoreShellEllipsoidModel, BaseComponent):
29    """ Class that evaluates a CoreShellEllipsoidModel model.
30        This file was auto-generated from ..\c_extensions\spheroid.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         equat_core      = 200.0 [A]
36         polar_core      = 20.0 [A]
37         equat_shell     = 250.0 [A]
38         polar_shell     = 30.0 [A]
39         sld_core        = 2e-006 [1/A^(2)]
40         sld_shell       = 1e-006 [1/A^(2)]
41         sld_solvent     = 6.3e-006 [1/A^(2)]
42         background      = 0.001 [1/cm]
43         axis_theta      = 0.0 [rad]
44         axis_phi        = 0.0 [rad]
45
46    """
47       
48    def __init__(self):
49        """ Initialization """
50       
51        # Initialize BaseComponent first, then sphere
52        BaseComponent.__init__(self)
53        CCoreShellEllipsoidModel.__init__(self)
54       
55        ## Name of the model
56        self.name = "CoreShellEllipsoidModel"
57        ## Model description
58        self.description ="""[SpheroidCoreShellModel] Calculates the form factor for an spheroid
59                ellipsoid particle with a core_shell structure.
60                The form factor is averaged over all possible
61                orientations of the ellipsoid such that P(q)
62                = scale*<f^2>/Vol + bkg, where f is the
63                single particle scattering amplitude.
64                [Parameters]:
65                equat_core = equatorial radius of core,
66                polar_core = polar radius of core,
67                equat_shell = equatorial radius of shell,
68                polar_shell = polar radius (revolution axis) of shell,
69                sld_core = SLD_core
70                sld_shell = SLD_shell
71                sld_solvent = SLD_solvent
72                background = Incoherent bkg
73                scale =scale
74                Note:It is the users' responsibility to ensure
75                that shell radii are larger than core radii.
76                oblate: polar radius < equatorial radius
77                prolate :  polar radius > equatorial radius"""
78       
79        ## Parameter details [units, min, max]
80        self.details = {}
81        self.details['scale'] = ['', None, None]
82        self.details['equat_core'] = ['[A]', None, None]
83        self.details['polar_core'] = ['[A]', None, None]
84        self.details['equat_shell'] = ['[A]', None, None]
85        self.details['polar_shell'] = ['[A]', None, None]
86        self.details['sld_core'] = ['[1/A^(2)]', None, None]
87        self.details['sld_shell'] = ['[1/A^(2)]', None, None]
88        self.details['sld_solvent'] = ['[1/A^(2)]', None, None]
89        self.details['background'] = ['[1/cm]', None, None]
90        self.details['axis_theta'] = ['[rad]', None, None]
91        self.details['axis_phi'] = ['[rad]', None, None]
92
93        ## fittable parameters
94        self.fixed=['equat_core.width', 'polar_core.width', 'equat_shell.width', 'polar_shell.width', 'axis_phi.width', 'axis_theta.width']
95       
96        ## parameters with orientation
97        self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width']
98   
99    def clone(self):
100        """ Return a identical copy of self """
101        return self._clone(CoreShellEllipsoidModel())   
102       
103    def __getstate__(self):
104        """ return object state for pickling and copying """
105        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
106       
107        return self.__dict__, model_state
108       
109    def __setstate__(self, state):
110        """ create object from pickled state """
111       
112        self.__dict__, model_state = state
113        self.params = model_state['params']
114        self.dispersion = model_state['dispersion']
115        self.log = model_state['log']
116       
117   
118    def run(self, x = 0.0):
119        """ Evaluate the model
120            @param x: input q, or [q,phi]
121            @return: scattering function P(q)
122        """
123       
124        return CCoreShellEllipsoidModel.run(self, x)
125   
126    def runXY(self, x = 0.0):
127        """ Evaluate the model in cartesian coordinates
128            @param x: input q, or [qx, qy]
129            @return: scattering function P(q)
130        """
131       
132        return CCoreShellEllipsoidModel.runXY(self, x)
133       
134    def evalDistribution(self, x = []):
135        """ Evaluate the model in cartesian coordinates
136            @param x: input q[], or [qx[], qy[]]
137            @return: scattering function P(q[])
138        """
139        return CCoreShellEllipsoidModel.evalDistribution(self, x)
140       
141    def calculate_ER(self):
142        """ Calculate the effective radius for P(q)*S(q)
143            @return: the value of the effective radius
144        """       
145        return CCoreShellEllipsoidModel.calculate_ER(self)
146       
147    def set_dispersion(self, parameter, dispersion):
148        """
149            Set the dispersion object for a model parameter
150            @param parameter: name of the parameter [string]
151            @dispersion: dispersion object of type DispersionModel
152        """
153        return CCoreShellEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp)
154       
155   
156# End of file
Note: See TracBrowser for help on using the repository browser.