[eddff027] | 1 | #!/usr/bin/env python |
---|
| 2 | """ |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | """ |
---|
| 15 | |
---|
| 16 | """ Provide functionality for a C extension model |
---|
| 17 | |
---|
| 18 | WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 19 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\spheroid.h |
---|
| 20 | AND RE-RUN THE GENERATOR SCRIPT |
---|
| 21 | |
---|
| 22 | """ |
---|
| 23 | |
---|
| 24 | from sans.models.BaseComponent import BaseComponent |
---|
| 25 | from sans_extension.c_models import CCoreShellEllipsoidModel |
---|
| 26 | import copy |
---|
| 27 | |
---|
| 28 | class CoreShellEllipsoidModel(CCoreShellEllipsoidModel, BaseComponent): |
---|
| 29 | """ Class that evaluates a CoreShellEllipsoidModel model. |
---|
[fe9c19b4] | 30 | This file was auto-generated from ..\c_extensions\spheroid.h. |
---|
| 31 | Refer to that file and the structure it contains |
---|
| 32 | for details of the model. |
---|
| 33 | List of default parameters: |
---|
[eddff027] | 34 | scale = 1.0 |
---|
| 35 | equat_core = 200.0 [A] |
---|
| 36 | polar_core = 20.0 [A] |
---|
| 37 | equat_shell = 250.0 [A] |
---|
| 38 | polar_shell = 30.0 [A] |
---|
[f10063e] | 39 | sld_core = 2e-006 [1/A^(2)] |
---|
| 40 | sld_shell = 1e-006 [1/A^(2)] |
---|
[27972c1d] | 41 | sld_solvent = 6.3e-006 [1/A^(2)] |
---|
[eddff027] | 42 | background = 0.001 [1/cm] |
---|
| 43 | axis_theta = 0.0 [rad] |
---|
| 44 | axis_phi = 0.0 [rad] |
---|
| 45 | |
---|
| 46 | """ |
---|
| 47 | |
---|
| 48 | def __init__(self): |
---|
| 49 | """ Initialization """ |
---|
| 50 | |
---|
| 51 | # Initialize BaseComponent first, then sphere |
---|
| 52 | BaseComponent.__init__(self) |
---|
| 53 | CCoreShellEllipsoidModel.__init__(self) |
---|
| 54 | |
---|
| 55 | ## Name of the model |
---|
| 56 | self.name = "CoreShellEllipsoidModel" |
---|
| 57 | ## Model description |
---|
| 58 | self.description ="""[SpheroidCoreShellModel] Calculates the form factor for an spheroid |
---|
| 59 | ellipsoid particle with a core_shell structure. |
---|
| 60 | The form factor is averaged over all possible |
---|
| 61 | orientations of the ellipsoid such that P(q) |
---|
| 62 | = scale*<f^2>/Vol + bkg, where f is the |
---|
| 63 | single particle scattering amplitude. |
---|
| 64 | [Parameters]: |
---|
| 65 | equat_core = equatorial radius of core, |
---|
| 66 | polar_core = polar radius of core, |
---|
| 67 | equat_shell = equatorial radius of shell, |
---|
[5eb9154] | 68 | polar_shell = polar radius (revolution axis) of shell, |
---|
[f10063e] | 69 | sld_core = SLD_core |
---|
| 70 | sld_shell = SLD_shell |
---|
[eddff027] | 71 | sld_solvent = SLD_solvent |
---|
| 72 | background = Incoherent bkg |
---|
| 73 | scale =scale |
---|
| 74 | Note:It is the users' responsibility to ensure |
---|
| 75 | that shell radii are larger than core radii. |
---|
[5eb9154] | 76 | oblate: polar radius < equatorial radius |
---|
| 77 | prolate : polar radius > equatorial radius""" |
---|
[eddff027] | 78 | |
---|
[fe9c19b4] | 79 | ## Parameter details [units, min, max] |
---|
[eddff027] | 80 | self.details = {} |
---|
| 81 | self.details['scale'] = ['', None, None] |
---|
| 82 | self.details['equat_core'] = ['[A]', None, None] |
---|
| 83 | self.details['polar_core'] = ['[A]', None, None] |
---|
| 84 | self.details['equat_shell'] = ['[A]', None, None] |
---|
| 85 | self.details['polar_shell'] = ['[A]', None, None] |
---|
[f10063e] | 86 | self.details['sld_core'] = ['[1/A^(2)]', None, None] |
---|
| 87 | self.details['sld_shell'] = ['[1/A^(2)]', None, None] |
---|
[27972c1d] | 88 | self.details['sld_solvent'] = ['[1/A^(2)]', None, None] |
---|
[eddff027] | 89 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 90 | self.details['axis_theta'] = ['[rad]', None, None] |
---|
| 91 | self.details['axis_phi'] = ['[rad]', None, None] |
---|
| 92 | |
---|
[fe9c19b4] | 93 | ## fittable parameters |
---|
[eddff027] | 94 | self.fixed=['equat_core.width', 'polar_core.width', 'equat_shell.width', 'polar_shell.width', 'axis_phi.width', 'axis_theta.width'] |
---|
| 95 | |
---|
| 96 | ## parameters with orientation |
---|
| 97 | self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] |
---|
| 98 | |
---|
| 99 | def clone(self): |
---|
| 100 | """ Return a identical copy of self """ |
---|
| 101 | return self._clone(CoreShellEllipsoidModel()) |
---|
[fe9c19b4] | 102 | |
---|
| 103 | def __getstate__(self): |
---|
| 104 | """ return object state for pickling and copying """ |
---|
| 105 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 106 | |
---|
| 107 | return self.__dict__, model_state |
---|
| 108 | |
---|
| 109 | def __setstate__(self, state): |
---|
| 110 | """ create object from pickled state """ |
---|
| 111 | |
---|
| 112 | self.__dict__, model_state = state |
---|
| 113 | self.params = model_state['params'] |
---|
| 114 | self.dispersion = model_state['dispersion'] |
---|
| 115 | self.log = model_state['log'] |
---|
| 116 | |
---|
[eddff027] | 117 | |
---|
| 118 | def run(self, x = 0.0): |
---|
| 119 | """ Evaluate the model |
---|
| 120 | @param x: input q, or [q,phi] |
---|
| 121 | @return: scattering function P(q) |
---|
| 122 | """ |
---|
| 123 | |
---|
| 124 | return CCoreShellEllipsoidModel.run(self, x) |
---|
| 125 | |
---|
| 126 | def runXY(self, x = 0.0): |
---|
| 127 | """ Evaluate the model in cartesian coordinates |
---|
| 128 | @param x: input q, or [qx, qy] |
---|
| 129 | @return: scattering function P(q) |
---|
| 130 | """ |
---|
| 131 | |
---|
| 132 | return CCoreShellEllipsoidModel.runXY(self, x) |
---|
| 133 | |
---|
[f9a1279] | 134 | def evalDistribution(self, x = []): |
---|
[eddff027] | 135 | """ Evaluate the model in cartesian coordinates |
---|
| 136 | @param x: input q[], or [qx[], qy[]] |
---|
| 137 | @return: scattering function P(q[]) |
---|
| 138 | """ |
---|
[f9a1279] | 139 | return CCoreShellEllipsoidModel.evalDistribution(self, x) |
---|
[eddff027] | 140 | |
---|
[5eb9154] | 141 | def calculate_ER(self): |
---|
| 142 | """ Calculate the effective radius for P(q)*S(q) |
---|
| 143 | @return: the value of the effective radius |
---|
| 144 | """ |
---|
| 145 | return CCoreShellEllipsoidModel.calculate_ER(self) |
---|
| 146 | |
---|
[eddff027] | 147 | def set_dispersion(self, parameter, dispersion): |
---|
| 148 | """ |
---|
| 149 | Set the dispersion object for a model parameter |
---|
| 150 | @param parameter: name of the parameter [string] |
---|
| 151 | @dispersion: dispersion object of type DispersionModel |
---|
| 152 | """ |
---|
| 153 | return CCoreShellEllipsoidModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | # End of file |
---|