source: sasview/sansmodels/src/sans/models/CoreShellCylinderModel.py @ e59da79

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since e59da79 was f9a1279, checked in by Gervaise Alina <gervyh@…>, 15 years ago

correct typo for model.distribution

  • Property mode set to 100644
File size: 5.8 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\core_shell_cylinder.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CCoreShellCylinderModel
26import copy   
27   
28class CoreShellCylinderModel(CCoreShellCylinderModel, BaseComponent):
29    """ Class that evaluates a CoreShellCylinderModel model.
30        This file was auto-generated from ..\c_extensions\core_shell_cylinder.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         radius          = 20.0 [A]
36         thickness       = 10.0 [A]
37         length          = 400.0 [A]
38         core_sld        = 1e-006 [1/A^(2)]
39         shell_sld       = 4e-006 [1/A^(2)]
40         solvent_sld     = 1e-006 [1/A^(2)]
41         background      = 0.0 [1/cm]
42         axis_theta      = 1.57 [rad]
43         axis_phi        = 0.0 [rad]
44
45    """
46       
47    def __init__(self):
48        """ Initialization """
49       
50        # Initialize BaseComponent first, then sphere
51        BaseComponent.__init__(self)
52        CCoreShellCylinderModel.__init__(self)
53       
54        ## Name of the model
55        self.name = "CoreShellCylinderModel"
56        ## Model description
57        self.description ="""P(q,alpha)= scale/Vs*f(q)^(2) + bkg,  where: f(q)= 2(core_sld
58                - solvant_sld)* Vc*sin[qLcos(alpha/2)]
59                /[qLcos(alpha/2)]*J1(qRsin(alpha))
60                /[qRsin(alpha)]+2(shell_sld-solvent_sld)
61                *Vs*sin[q(L+T)cos(alpha/2)][[q(L+T)
62                *cos(alpha/2)]*J1(q(R+T)sin(alpha))
63                /q(R+T)sin(alpha)]
64               
65                alpha:is the angle between the axis of
66                the cylinder and the q-vector
67                Vs: the volume of the outer shell
68                Vc: the volume of the core
69                L: the length of the core
70                shell_sld: the scattering length density
71                of the shell
72                solvent_sld: the scattering length density
73                of the solvent
74                bkg: the background
75                T: the thickness
76                R+T: is the outer radius
77                L+2T: The total length of the outershell
78                J1: the first order Bessel function
79                theta: axis_theta of the cylinder
80                phi: the axis_phi of the cylinder..."""
81       
82        ## Parameter details [units, min, max]
83        self.details = {}
84        self.details['scale'] = ['', None, None]
85        self.details['radius'] = ['[A]', None, None]
86        self.details['thickness'] = ['[A]', None, None]
87        self.details['length'] = ['[A]', None, None]
88        self.details['core_sld'] = ['[1/A^(2)]', None, None]
89        self.details['shell_sld'] = ['[1/A^(2)]', None, None]
90        self.details['solvent_sld'] = ['[1/A^(2)]', None, None]
91        self.details['background'] = ['[1/cm]', None, None]
92        self.details['axis_theta'] = ['[rad]', None, None]
93        self.details['axis_phi'] = ['[rad]', None, None]
94
95        ## fittable parameters
96        self.fixed=['axis_phi.width', 'axis_theta.width', 'length.width', 'radius.width', 'thickness.width']
97       
98        ## parameters with orientation
99        self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width']
100   
101    def clone(self):
102        """ Return a identical copy of self """
103        return self._clone(CoreShellCylinderModel())   
104       
105    def __getstate__(self):
106        """ return object state for pickling and copying """
107        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
108       
109        return self.__dict__, model_state
110       
111    def __setstate__(self, state):
112        """ create object from pickled state """
113       
114        self.__dict__, model_state = state
115        self.params = model_state['params']
116        self.dispersion = model_state['dispersion']
117        self.log = model_state['log']
118       
119   
120    def run(self, x = 0.0):
121        """ Evaluate the model
122            @param x: input q, or [q,phi]
123            @return: scattering function P(q)
124        """
125       
126        return CCoreShellCylinderModel.run(self, x)
127   
128    def runXY(self, x = 0.0):
129        """ Evaluate the model in cartesian coordinates
130            @param x: input q, or [qx, qy]
131            @return: scattering function P(q)
132        """
133       
134        return CCoreShellCylinderModel.runXY(self, x)
135       
136    def evalDistribution(self, x = []):
137        """ Evaluate the model in cartesian coordinates
138            @param x: input q[], or [qx[], qy[]]
139            @return: scattering function P(q[])
140        """
141        return CCoreShellCylinderModel.evalDistribution(self, x)
142       
143    def calculate_ER(self):
144        """ Calculate the effective radius for P(q)*S(q)
145            @return: the value of the effective radius
146        """       
147        return CCoreShellCylinderModel.calculate_ER(self)
148       
149    def set_dispersion(self, parameter, dispersion):
150        """
151            Set the dispersion object for a model parameter
152            @param parameter: name of the parameter [string]
153            @dispersion: dispersion object of type DispersionModel
154        """
155        return CCoreShellCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
156       
157   
158# End of file
Note: See TracBrowser for help on using the repository browser.