source: sasview/sansmodels/src/sans/models/CoreShellCylinderModel.py @ 339ce67

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 339ce67 was 35aface, checked in by Jae Cho <jhjcho@…>, 14 years ago

addede new models and attr. non_fittable

  • Property mode set to 100644
File size: 6.2 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\core_shell_cylinder.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CCoreShellCylinderModel
29import copy   
30   
31class CoreShellCylinderModel(CCoreShellCylinderModel, BaseComponent):
32    """
33    Class that evaluates a CoreShellCylinderModel model.
34    This file was auto-generated from ..\c_extensions\core_shell_cylinder.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         radius          = 20.0 [A]
40         thickness       = 10.0 [A]
41         length          = 400.0 [A]
42         core_sld        = 1e-006 [1/A^(2)]
43         shell_sld       = 4e-006 [1/A^(2)]
44         solvent_sld     = 1e-006 [1/A^(2)]
45         background      = 0.0 [1/cm]
46         axis_theta      = 1.57 [rad]
47         axis_phi        = 0.0 [rad]
48
49    """
50       
51    def __init__(self):
52        """ Initialization """
53       
54        # Initialize BaseComponent first, then sphere
55        BaseComponent.__init__(self)
56        CCoreShellCylinderModel.__init__(self)
57       
58        ## Name of the model
59        self.name = "CoreShellCylinderModel"
60        ## Model description
61        self.description ="""P(q,alpha)= scale/Vs*f(q)^(2) + bkg,  where: f(q)= 2(core_sld
62                - solvant_sld)* Vc*sin[qLcos(alpha/2)]
63                /[qLcos(alpha/2)]*J1(qRsin(alpha))
64                /[qRsin(alpha)]+2(shell_sld-solvent_sld)
65                *Vs*sin[q(L+T)cos(alpha/2)][[q(L+T)
66                *cos(alpha/2)]*J1(q(R+T)sin(alpha))
67                /q(R+T)sin(alpha)]
68               
69                alpha:is the angle between the axis of
70                the cylinder and the q-vector
71                Vs: the volume of the outer shell
72                Vc: the volume of the core
73                L: the length of the core
74                shell_sld: the scattering length density
75                of the shell
76                solvent_sld: the scattering length density
77                of the solvent
78                bkg: the background
79                T: the thickness
80                R+T: is the outer radius
81                L+2T: The total length of the outershell
82                J1: the first order Bessel function
83                theta: axis_theta of the cylinder
84                phi: the axis_phi of the cylinder..."""
85       
86        ## Parameter details [units, min, max]
87        self.details = {}
88        self.details['scale'] = ['', None, None]
89        self.details['radius'] = ['[A]', None, None]
90        self.details['thickness'] = ['[A]', None, None]
91        self.details['length'] = ['[A]', None, None]
92        self.details['core_sld'] = ['[1/A^(2)]', None, None]
93        self.details['shell_sld'] = ['[1/A^(2)]', None, None]
94        self.details['solvent_sld'] = ['[1/A^(2)]', None, None]
95        self.details['background'] = ['[1/cm]', None, None]
96        self.details['axis_theta'] = ['[rad]', None, None]
97        self.details['axis_phi'] = ['[rad]', None, None]
98
99        ## fittable parameters
100        self.fixed=['axis_phi.width', 'axis_theta.width', 'length.width', 'radius.width', 'thickness.width']
101       
102        ## non-fittable parameters
103        self.non_fittable=[]
104       
105        ## parameters with orientation
106        self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width']
107   
108    def clone(self):
109        """ Return a identical copy of self """
110        return self._clone(CoreShellCylinderModel())   
111       
112    def __getstate__(self):
113        """
114        return object state for pickling and copying
115        """
116        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
117       
118        return self.__dict__, model_state
119       
120    def __setstate__(self, state):
121        """
122        create object from pickled state
123       
124        :param state: the state of the current model
125       
126        """
127       
128        self.__dict__, model_state = state
129        self.params = model_state['params']
130        self.dispersion = model_state['dispersion']
131        self.log = model_state['log']
132       
133   
134    def run(self, x=0.0):
135        """
136        Evaluate the model
137       
138        :param x: input q, or [q,phi]
139       
140        :return: scattering function P(q)
141       
142        """
143       
144        return CCoreShellCylinderModel.run(self, x)
145   
146    def runXY(self, x=0.0):
147        """
148        Evaluate the model in cartesian coordinates
149       
150        :param x: input q, or [qx, qy]
151       
152        :return: scattering function P(q)
153       
154        """
155       
156        return CCoreShellCylinderModel.runXY(self, x)
157       
158    def evalDistribution(self, x=[]):
159        """
160        Evaluate the model in cartesian coordinates
161       
162        :param x: input q[], or [qx[], qy[]]
163       
164        :return: scattering function P(q[])
165       
166        """
167        return CCoreShellCylinderModel.evalDistribution(self, x)
168       
169    def calculate_ER(self):
170        """
171        Calculate the effective radius for P(q)*S(q)
172       
173        :return: the value of the effective radius
174       
175        """       
176        return CCoreShellCylinderModel.calculate_ER(self)
177       
178    def set_dispersion(self, parameter, dispersion):
179        """
180        Set the dispersion object for a model parameter
181       
182        :param parameter: name of the parameter [string]
183        :param dispersion: dispersion object of type DispersionModel
184       
185        """
186        return CCoreShellCylinderModel.set_dispersion(self, parameter, dispersion.cdisp)
187       
188   
189# End of file
Note: See TracBrowser for help on using the repository browser.