[ae3ce4e] | 1 | #!/usr/bin/env python |
---|
[95986b5] | 2 | |
---|
[79ac6f8] | 3 | ############################################################################## |
---|
| 4 | # This software was developed by the University of Tennessee as part of the |
---|
| 5 | # Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 6 | # project funded by the US National Science Foundation. |
---|
| 7 | # |
---|
| 8 | # If you use DANSE applications to do scientific research that leads to |
---|
| 9 | # publication, we ask that you acknowledge the use of the software with the |
---|
| 10 | # following sentence: |
---|
| 11 | # |
---|
| 12 | # "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 13 | # |
---|
| 14 | # copyright 2008, University of Tennessee |
---|
| 15 | ############################################################################## |
---|
[95986b5] | 16 | |
---|
| 17 | |
---|
[79ac6f8] | 18 | """ |
---|
| 19 | Provide functionality for a C extension model |
---|
[ae3ce4e] | 20 | |
---|
[79ac6f8] | 21 | :WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY |
---|
| 22 | DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\core_shell_cylinder.h |
---|
| 23 | AND RE-RUN THE GENERATOR SCRIPT |
---|
[ae3ce4e] | 24 | |
---|
| 25 | """ |
---|
| 26 | |
---|
| 27 | from sans.models.BaseComponent import BaseComponent |
---|
| 28 | from sans_extension.c_models import CCoreShellCylinderModel |
---|
| 29 | import copy |
---|
| 30 | |
---|
| 31 | class CoreShellCylinderModel(CCoreShellCylinderModel, BaseComponent): |
---|
[79ac6f8] | 32 | """ |
---|
| 33 | Class that evaluates a CoreShellCylinderModel model. |
---|
| 34 | This file was auto-generated from ..\c_extensions\core_shell_cylinder.h. |
---|
| 35 | Refer to that file and the structure it contains |
---|
| 36 | for details of the model. |
---|
| 37 | List of default parameters: |
---|
[ae3ce4e] | 38 | scale = 1.0 |
---|
[1ed3834] | 39 | radius = 20.0 [A] |
---|
| 40 | thickness = 10.0 [A] |
---|
| 41 | length = 400.0 [A] |
---|
[27972c1d] | 42 | core_sld = 1e-006 [1/A^(2)] |
---|
| 43 | shell_sld = 4e-006 [1/A^(2)] |
---|
| 44 | solvent_sld = 1e-006 [1/A^(2)] |
---|
[0824909] | 45 | background = 0.0 [1/cm] |
---|
| 46 | axis_theta = 1.57 [rad] |
---|
| 47 | axis_phi = 0.0 [rad] |
---|
[ae3ce4e] | 48 | |
---|
| 49 | """ |
---|
| 50 | |
---|
| 51 | def __init__(self): |
---|
| 52 | """ Initialization """ |
---|
| 53 | |
---|
| 54 | # Initialize BaseComponent first, then sphere |
---|
| 55 | BaseComponent.__init__(self) |
---|
| 56 | CCoreShellCylinderModel.__init__(self) |
---|
| 57 | |
---|
| 58 | ## Name of the model |
---|
| 59 | self.name = "CoreShellCylinderModel" |
---|
[836fe6e] | 60 | ## Model description |
---|
[1ed3834] | 61 | self.description ="""P(q,alpha)= scale/Vs*f(q)^(2) + bkg, where: f(q)= 2(core_sld |
---|
| 62 | - solvant_sld)* Vc*sin[qLcos(alpha/2)] |
---|
| 63 | /[qLcos(alpha/2)]*J1(qRsin(alpha)) |
---|
| 64 | /[qRsin(alpha)]+2(shell_sld-solvent_sld) |
---|
| 65 | *Vs*sin[q(L+T)cos(alpha/2)][[q(L+T) |
---|
| 66 | *cos(alpha/2)]*J1(q(R+T)sin(alpha)) |
---|
| 67 | /q(R+T)sin(alpha)] |
---|
| 68 | |
---|
| 69 | alpha:is the angle between the axis of |
---|
| 70 | the cylinder and the q-vector |
---|
[9316609] | 71 | Vs: the volume of the outer shell |
---|
| 72 | Vc: the volume of the core |
---|
| 73 | L: the length of the core |
---|
[1ed3834] | 74 | shell_sld: the scattering length density |
---|
| 75 | of the shell |
---|
| 76 | solvent_sld: the scattering length density |
---|
| 77 | of the solvent |
---|
[9316609] | 78 | bkg: the background |
---|
| 79 | T: the thickness |
---|
| 80 | R+T: is the outer radius |
---|
| 81 | L+2T: The total length of the outershell |
---|
| 82 | J1: the first order Bessel function |
---|
| 83 | theta: axis_theta of the cylinder |
---|
[9bd69098] | 84 | phi: the axis_phi of the cylinder...""" |
---|
[836fe6e] | 85 | |
---|
[fe9c19b4] | 86 | ## Parameter details [units, min, max] |
---|
[ae3ce4e] | 87 | self.details = {} |
---|
| 88 | self.details['scale'] = ['', None, None] |
---|
[1ed3834] | 89 | self.details['radius'] = ['[A]', None, None] |
---|
| 90 | self.details['thickness'] = ['[A]', None, None] |
---|
| 91 | self.details['length'] = ['[A]', None, None] |
---|
[27972c1d] | 92 | self.details['core_sld'] = ['[1/A^(2)]', None, None] |
---|
| 93 | self.details['shell_sld'] = ['[1/A^(2)]', None, None] |
---|
| 94 | self.details['solvent_sld'] = ['[1/A^(2)]', None, None] |
---|
[0824909] | 95 | self.details['background'] = ['[1/cm]', None, None] |
---|
| 96 | self.details['axis_theta'] = ['[rad]', None, None] |
---|
| 97 | self.details['axis_phi'] = ['[rad]', None, None] |
---|
[836fe6e] | 98 | |
---|
[fe9c19b4] | 99 | ## fittable parameters |
---|
[9bd69098] | 100 | self.fixed=['axis_phi.width', 'axis_theta.width', 'length.width', 'radius.width', 'thickness.width'] |
---|
[25a608f5] | 101 | |
---|
| 102 | ## parameters with orientation |
---|
| 103 | self.orientation_params =['axis_phi', 'axis_theta', 'axis_phi.width', 'axis_theta.width'] |
---|
[ae3ce4e] | 104 | |
---|
| 105 | def clone(self): |
---|
| 106 | """ Return a identical copy of self """ |
---|
[95986b5] | 107 | return self._clone(CoreShellCylinderModel()) |
---|
[fe9c19b4] | 108 | |
---|
| 109 | def __getstate__(self): |
---|
[79ac6f8] | 110 | """ |
---|
| 111 | return object state for pickling and copying |
---|
| 112 | """ |
---|
[fe9c19b4] | 113 | model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log} |
---|
| 114 | |
---|
| 115 | return self.__dict__, model_state |
---|
| 116 | |
---|
| 117 | def __setstate__(self, state): |
---|
[79ac6f8] | 118 | """ |
---|
| 119 | create object from pickled state |
---|
| 120 | |
---|
| 121 | :param state: the state of the current model |
---|
| 122 | |
---|
| 123 | """ |
---|
[fe9c19b4] | 124 | |
---|
| 125 | self.__dict__, model_state = state |
---|
| 126 | self.params = model_state['params'] |
---|
| 127 | self.dispersion = model_state['dispersion'] |
---|
| 128 | self.log = model_state['log'] |
---|
| 129 | |
---|
[ae3ce4e] | 130 | |
---|
[79ac6f8] | 131 | def run(self, x=0.0): |
---|
| 132 | """ |
---|
| 133 | Evaluate the model |
---|
| 134 | |
---|
| 135 | :param x: input q, or [q,phi] |
---|
| 136 | |
---|
| 137 | :return: scattering function P(q) |
---|
| 138 | |
---|
[ae3ce4e] | 139 | """ |
---|
| 140 | |
---|
| 141 | return CCoreShellCylinderModel.run(self, x) |
---|
| 142 | |
---|
[79ac6f8] | 143 | def runXY(self, x=0.0): |
---|
| 144 | """ |
---|
| 145 | Evaluate the model in cartesian coordinates |
---|
| 146 | |
---|
| 147 | :param x: input q, or [qx, qy] |
---|
| 148 | |
---|
| 149 | :return: scattering function P(q) |
---|
| 150 | |
---|
[ae3ce4e] | 151 | """ |
---|
| 152 | |
---|
| 153 | return CCoreShellCylinderModel.runXY(self, x) |
---|
[95986b5] | 154 | |
---|
[79ac6f8] | 155 | def evalDistribution(self, x=[]): |
---|
| 156 | """ |
---|
| 157 | Evaluate the model in cartesian coordinates |
---|
| 158 | |
---|
| 159 | :param x: input q[], or [qx[], qy[]] |
---|
| 160 | |
---|
| 161 | :return: scattering function P(q[]) |
---|
| 162 | |
---|
[9bd69098] | 163 | """ |
---|
[f9a1279] | 164 | return CCoreShellCylinderModel.evalDistribution(self, x) |
---|
[9bd69098] | 165 | |
---|
[5eb9154] | 166 | def calculate_ER(self): |
---|
[79ac6f8] | 167 | """ |
---|
| 168 | Calculate the effective radius for P(q)*S(q) |
---|
| 169 | |
---|
| 170 | :return: the value of the effective radius |
---|
| 171 | |
---|
[5eb9154] | 172 | """ |
---|
| 173 | return CCoreShellCylinderModel.calculate_ER(self) |
---|
| 174 | |
---|
[95986b5] | 175 | def set_dispersion(self, parameter, dispersion): |
---|
| 176 | """ |
---|
[79ac6f8] | 177 | Set the dispersion object for a model parameter |
---|
| 178 | |
---|
| 179 | :param parameter: name of the parameter [string] |
---|
| 180 | :param dispersion: dispersion object of type DispersionModel |
---|
| 181 | |
---|
[95986b5] | 182 | """ |
---|
| 183 | return CCoreShellCylinderModel.set_dispersion(self, parameter, dispersion.cdisp) |
---|
| 184 | |
---|
[ae3ce4e] | 185 | |
---|
| 186 | # End of file |
---|