source: sasview/sansmodels/src/sans/models/BinaryHSModel.py @ 59930f3

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 59930f3 was 5eb9154, checked in by Jae Cho <jhjcho@…>, 15 years ago

calculation of the effective radius are added

  • Property mode set to 100644
File size: 4.4 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\binaryHS.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CBinaryHSModel
26import copy   
27   
28class BinaryHSModel(CBinaryHSModel, BaseComponent):
29    """ Class that evaluates a BinaryHSModel model.
30        This file was auto-generated from ..\c_extensions\binaryHS.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         l_radius        = 100.0 [A]
35         s_radius        = 25.0 [A]
36         vol_frac_ls     = 0.1
37         vol_frac_ss     = 0.2
38         ls_sld          = 3.5e-006 [1/A²]
39         ss_sld          = 5e-007 [1/A²]
40         solvent_sld     = 6.36e-006 [1/A²]
41         background      = 0.001 [1/cm]
42
43    """
44       
45    def __init__(self):
46        """ Initialization """
47       
48        # Initialize BaseComponent first, then sphere
49        BaseComponent.__init__(self)
50        CBinaryHSModel.__init__(self)
51       
52        ## Name of the model
53        self.name = "BinaryHSModel"
54        ## Model description
55        self.description =""" Model parameters: l_radius : large radius of binary hard sphere
56                s_radius : small radius of binary hard sphere
57                vol_frac_ls : volume fraction of large spheres
58                vol_frac_ss : volume fraction of small spheres
59                ls_sld: large sphere  scattering length density
60                ss_sld: small sphere scattering length density
61                solvent_sld: solvent scattering length density
62                background: incoherent background"""
63       
64                ## Parameter details [units, min, max]
65        self.details = {}
66        self.details['l_radius'] = ['[A]', None, None]
67        self.details['s_radius'] = ['[A]', None, None]
68        self.details['vol_frac_ls'] = ['', None, None]
69        self.details['vol_frac_ss'] = ['', None, None]
70        self.details['ls_sld'] = ['[1/A²]', None, None]
71        self.details['ss_sld'] = ['[1/A²]', None, None]
72        self.details['solvent_sld'] = ['[1/A²]', None, None]
73        self.details['background'] = ['[1/cm]', None, None]
74
75                ## fittable parameters
76        self.fixed=['l_radius.width', 's_radius.width']
77       
78        ## parameters with orientation
79        self.orientation_params =[]
80   
81    def clone(self):
82        """ Return a identical copy of self """
83        return self._clone(BinaryHSModel())   
84   
85    def run(self, x = 0.0):
86        """ Evaluate the model
87            @param x: input q, or [q,phi]
88            @return: scattering function P(q)
89        """
90       
91        return CBinaryHSModel.run(self, x)
92   
93    def runXY(self, x = 0.0):
94        """ Evaluate the model in cartesian coordinates
95            @param x: input q, or [qx, qy]
96            @return: scattering function P(q)
97        """
98       
99        return CBinaryHSModel.runXY(self, x)
100       
101    def evalDistribition(self, x = []):
102        """ Evaluate the model in cartesian coordinates
103            @param x: input q[], or [qx[], qy[]]
104            @return: scattering function P(q[])
105        """
106        return CBinaryHSModel.evalDistribition(self, x)
107       
108    def calculate_ER(self):
109        """ Calculate the effective radius for P(q)*S(q)
110            @param x: input q, or [q,phi]
111            @return: the value of the effective radius
112        """       
113        return CBinaryHSModel.calculate_ER(self)
114       
115    def set_dispersion(self, parameter, dispersion):
116        """
117            Set the dispersion object for a model parameter
118            @param parameter: name of the parameter [string]
119            @dispersion: dispersion object of type DispersionModel
120        """
121        return CBinaryHSModel.set_dispersion(self, parameter, dispersion.cdisp)
122       
123   
124# End of file
Note: See TracBrowser for help on using the repository browser.