source: sasview/sansmodels/src/sans/models/BinaryHSModel.py @ 04349fe

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 04349fe was f9a1279, checked in by Gervaise Alina <gervyh@…>, 15 years ago

correct typo for model.distribution

  • Property mode set to 100644
File size: 4.9 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\binaryHS.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CBinaryHSModel
26import copy   
27   
28class BinaryHSModel(CBinaryHSModel, BaseComponent):
29    """ Class that evaluates a BinaryHSModel model.
30        This file was auto-generated from ..\c_extensions\binaryHS.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         l_radius        = 100.0 [A]
35         s_radius        = 25.0 [A]
36         vol_frac_ls     = 0.1
37         vol_frac_ss     = 0.2
38         ls_sld          = 3.5e-006 [1/A^(2)]
39         ss_sld          = 5e-007 [1/A^(2)]
40         solvent_sld     = 6.36e-006 [1/A^(2)]
41         background      = 0.001 [1/cm]
42
43    """
44       
45    def __init__(self):
46        """ Initialization """
47       
48        # Initialize BaseComponent first, then sphere
49        BaseComponent.__init__(self)
50        CBinaryHSModel.__init__(self)
51       
52        ## Name of the model
53        self.name = "BinaryHSModel"
54        ## Model description
55        self.description =""" Model parameters: l_radius : large radius of binary hard sphere
56                s_radius : small radius of binary hard sphere
57                vol_frac_ls : volume fraction of large spheres
58                vol_frac_ss : volume fraction of small spheres
59                ls_sld: large sphere  scattering length density
60                ss_sld: small sphere scattering length density
61                solvent_sld: solvent scattering length density
62                background: incoherent background"""
63       
64        ## Parameter details [units, min, max]
65        self.details = {}
66        self.details['l_radius'] = ['[A]', None, None]
67        self.details['s_radius'] = ['[A]', None, None]
68        self.details['vol_frac_ls'] = ['', None, None]
69        self.details['vol_frac_ss'] = ['', None, None]
70        self.details['ls_sld'] = ['[1/A^(2)]', None, None]
71        self.details['ss_sld'] = ['[1/A^(2)]', None, None]
72        self.details['solvent_sld'] = ['[1/A^(2)]', None, None]
73        self.details['background'] = ['[1/cm]', None, None]
74
75        ## fittable parameters
76        self.fixed=['l_radius.width', 's_radius.width']
77       
78        ## parameters with orientation
79        self.orientation_params =[]
80   
81    def clone(self):
82        """ Return a identical copy of self """
83        return self._clone(BinaryHSModel())   
84       
85    def __getstate__(self):
86        """ return object state for pickling and copying """
87        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
88       
89        return self.__dict__, model_state
90       
91    def __setstate__(self, state):
92        """ create object from pickled state """
93       
94        self.__dict__, model_state = state
95        self.params = model_state['params']
96        self.dispersion = model_state['dispersion']
97        self.log = model_state['log']
98       
99   
100    def run(self, x = 0.0):
101        """ Evaluate the model
102            @param x: input q, or [q,phi]
103            @return: scattering function P(q)
104        """
105       
106        return CBinaryHSModel.run(self, x)
107   
108    def runXY(self, x = 0.0):
109        """ Evaluate the model in cartesian coordinates
110            @param x: input q, or [qx, qy]
111            @return: scattering function P(q)
112        """
113       
114        return CBinaryHSModel.runXY(self, x)
115       
116    def evalDistribution(self, x = []):
117        """ Evaluate the model in cartesian coordinates
118            @param x: input q[], or [qx[], qy[]]
119            @return: scattering function P(q[])
120        """
121        return CBinaryHSModel.evalDistribution(self, x)
122       
123    def calculate_ER(self):
124        """ Calculate the effective radius for P(q)*S(q)
125            @return: the value of the effective radius
126        """       
127        return CBinaryHSModel.calculate_ER(self)
128       
129    def set_dispersion(self, parameter, dispersion):
130        """
131            Set the dispersion object for a model parameter
132            @param parameter: name of the parameter [string]
133            @dispersion: dispersion object of type DispersionModel
134        """
135        return CBinaryHSModel.set_dispersion(self, parameter, dispersion.cdisp)
136       
137   
138# End of file
Note: See TracBrowser for help on using the repository browser.