1 | #!/usr/bin/env python |
---|
2 | """ |
---|
3 | Provide base functionality for all model components |
---|
4 | """ |
---|
5 | |
---|
6 | # imports |
---|
7 | import copy |
---|
8 | import numpy |
---|
9 | #TO DO: that about a way to make the parameter |
---|
10 | #is self return if it is fittable or not |
---|
11 | |
---|
12 | class BaseComponent: |
---|
13 | """ |
---|
14 | Basic model component |
---|
15 | |
---|
16 | Since version 0.5.0, basic operations are no longer supported. |
---|
17 | """ |
---|
18 | |
---|
19 | def __init__(self): |
---|
20 | """ Initialization""" |
---|
21 | |
---|
22 | ## Name of the model |
---|
23 | self.name = "BaseComponent" |
---|
24 | |
---|
25 | ## Parameters to be accessed by client |
---|
26 | self.params = {} |
---|
27 | self.details = {} |
---|
28 | ## Dictionary used to store the dispersity/averaging |
---|
29 | # parameters of dispersed/averaged parameters. |
---|
30 | self.dispersion = {} |
---|
31 | # string containing information about the model such as the equation |
---|
32 | #of the given model, exception or possible use |
---|
33 | self.description='' |
---|
34 | #list of parameter that can be fitted |
---|
35 | self.fixed= [] |
---|
36 | ## parameters with orientation |
---|
37 | self.orientation_params =[] |
---|
38 | ## store dispersity reference |
---|
39 | self._persistency_dict = {} |
---|
40 | |
---|
41 | def __str__(self): |
---|
42 | """ |
---|
43 | @return: string representation |
---|
44 | """ |
---|
45 | return self.name |
---|
46 | |
---|
47 | def is_fittable(self, par_name): |
---|
48 | """ |
---|
49 | Check if a given parameter is fittable or not |
---|
50 | @param par_name: the parameter name to check |
---|
51 | """ |
---|
52 | return par_name.lower() in self.fixed |
---|
53 | #For the future |
---|
54 | #return self.params[str(par_name)].is_fittable() |
---|
55 | |
---|
56 | def run(self, x): return NotImplemented |
---|
57 | def runXY(self, x): return NotImplemented |
---|
58 | def calculate_ER(self, x): return NotImplemented |
---|
59 | def evalDistribution(self, qdist): |
---|
60 | """ |
---|
61 | Evaluate a distribution of q-values. |
---|
62 | |
---|
63 | * For 1D, a numpy array is expected as input: |
---|
64 | |
---|
65 | evalDistribution(q) |
---|
66 | |
---|
67 | where q is a numpy array. |
---|
68 | |
---|
69 | |
---|
70 | * For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime]. |
---|
71 | |
---|
72 | For the following matrix of q_values [qx,qy], we will have: |
---|
73 | +--------+--------+--------+ |
---|
74 | qy[2] | | | | |
---|
75 | +--------+--------+--------+ |
---|
76 | qy[1] | | | | |
---|
77 | +--------+--------+--------+ |
---|
78 | qy[0] | | | | |
---|
79 | +--------+--------+--------+ |
---|
80 | qx[0] qx[1] qx[2] |
---|
81 | |
---|
82 | |
---|
83 | The q-values must be stored in numpy arrays. |
---|
84 | The qxprime and qyprime are 2D arrays. From the two lists of q-values |
---|
85 | above, numpy arrays must be created the following way: |
---|
86 | |
---|
87 | qx_prime = numpy.reshape(qx, [3,1]) |
---|
88 | qy_prime = numpy.reshape(qy, [1,3]) |
---|
89 | |
---|
90 | The method is then called the following way: |
---|
91 | |
---|
92 | evalDistribution([qx_prime, qy_prime]) |
---|
93 | |
---|
94 | @param qdist: ndarray of scalar q-values or list [qx,qy] where qx,qy are 2D ndarrays |
---|
95 | """ |
---|
96 | if qdist.__class__.__name__ == 'list': |
---|
97 | # Check whether we have a list of ndarrays [qx,qy] |
---|
98 | if len(qdist)!=2 or \ |
---|
99 | qdist[0].__class__.__name__ != 'ndarray' or \ |
---|
100 | qdist[1].__class__.__name__ != 'ndarray': |
---|
101 | raise RuntimeError, "evalDistribution expects a list of 2 ndarrays" |
---|
102 | |
---|
103 | # Extract qx and qy for code clarity |
---|
104 | qx = qdist[0] |
---|
105 | qy = qdist[1] |
---|
106 | |
---|
107 | # Create output array |
---|
108 | iq_array = numpy.zeros([qx.shape[0], qy.shape[1]]) |
---|
109 | |
---|
110 | for i in range(qx.shape[0]): |
---|
111 | for j in range(qy.shape[1]): |
---|
112 | iq_array[i][j] = self.runXY([qx[i][0],qy[0][j]]) |
---|
113 | return iq_array |
---|
114 | |
---|
115 | elif qdist.__class__.__name__ == 'ndarray': |
---|
116 | # We have a simple 1D distribution of q-values |
---|
117 | iq_array = numpy.zeros(len(qdist)) |
---|
118 | for i in range(len(qdist)): |
---|
119 | iq_array[i] = self.runXY(qdist[i]) |
---|
120 | return iq_array |
---|
121 | |
---|
122 | else: |
---|
123 | mesg = "evalDistribution is expecting an ndarray of scalar q-values" |
---|
124 | mesg += " or a list [qx,qy] where qx,qy are 2D ndarrays." |
---|
125 | raise RuntimeError, mesg |
---|
126 | |
---|
127 | def clone(self): |
---|
128 | """ Returns a new object identical to the current object """ |
---|
129 | obj = copy.deepcopy(self) |
---|
130 | return self._clone(obj) |
---|
131 | |
---|
132 | def _clone(self, obj): |
---|
133 | """ |
---|
134 | Internal utility function to copy the internal |
---|
135 | data members to a fresh copy. |
---|
136 | """ |
---|
137 | obj.params = copy.deepcopy(self.params) |
---|
138 | obj.details = copy.deepcopy(self.details) |
---|
139 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
140 | obj._persistency_dict = copy.deepcopy( self._persistency_dict) |
---|
141 | return obj |
---|
142 | |
---|
143 | def setParam(self, name, value): |
---|
144 | """ |
---|
145 | Set the value of a model parameter |
---|
146 | |
---|
147 | @param name: name of the parameter |
---|
148 | @param value: value of the parameter |
---|
149 | """ |
---|
150 | # Look for dispersion parameters |
---|
151 | toks = name.split('.') |
---|
152 | if len(toks)==2: |
---|
153 | for item in self.dispersion.keys(): |
---|
154 | if item.lower()==toks[0].lower(): |
---|
155 | for par in self.dispersion[item]: |
---|
156 | if par.lower() == toks[1].lower(): |
---|
157 | self.dispersion[item][par] = value |
---|
158 | return |
---|
159 | else: |
---|
160 | # Look for standard parameter |
---|
161 | for item in self.params.keys(): |
---|
162 | if item.lower()==name.lower(): |
---|
163 | self.params[item] = value |
---|
164 | return |
---|
165 | |
---|
166 | raise ValueError, "Model does not contain parameter %s" % name |
---|
167 | |
---|
168 | def getParam(self, name): |
---|
169 | """ |
---|
170 | Set the value of a model parameter |
---|
171 | |
---|
172 | @param name: name of the parameter |
---|
173 | """ |
---|
174 | # Look for dispersion parameters |
---|
175 | toks = name.split('.') |
---|
176 | if len(toks)==2: |
---|
177 | for item in self.dispersion.keys(): |
---|
178 | if item.lower()==toks[0].lower(): |
---|
179 | for par in self.dispersion[item]: |
---|
180 | if par.lower() == toks[1].lower(): |
---|
181 | return self.dispersion[item][par] |
---|
182 | else: |
---|
183 | # Look for standard parameter |
---|
184 | for item in self.params.keys(): |
---|
185 | if item.lower()==name.lower(): |
---|
186 | return self.params[item] |
---|
187 | |
---|
188 | raise ValueError, "Model does not contain parameter %s" % name |
---|
189 | |
---|
190 | def getParamList(self): |
---|
191 | """ |
---|
192 | Return a list of all available parameters for the model |
---|
193 | """ |
---|
194 | list = self.params.keys() |
---|
195 | # WARNING: Extending the list with the dispersion parameters |
---|
196 | list.extend(self.getDispParamList()) |
---|
197 | return list |
---|
198 | |
---|
199 | def getDispParamList(self): |
---|
200 | """ |
---|
201 | Return a list of all available parameters for the model |
---|
202 | """ |
---|
203 | list = [] |
---|
204 | |
---|
205 | for item in self.dispersion.keys(): |
---|
206 | for p in self.dispersion[item].keys(): |
---|
207 | if p not in ['type']: |
---|
208 | list.append('%s.%s' % (item.lower(), p.lower())) |
---|
209 | |
---|
210 | return list |
---|
211 | |
---|
212 | # Old-style methods that are no longer used |
---|
213 | def setParamWithToken(self, name, value, token, member): return NotImplemented |
---|
214 | def getParamWithToken(self, name, token, member): return NotImplemented |
---|
215 | def getParamListWithToken(self, token, member): return NotImplemented |
---|
216 | def __add__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
217 | def __sub__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
218 | def __mul__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
219 | def __div__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
220 | |
---|