[ae3ce4e] | 1 | #!/usr/bin/env python |
---|
[79ac6f8] | 2 | |
---|
[ae60f86] | 3 | """ |
---|
[79ac6f8] | 4 | Provide base functionality for all model components |
---|
[ae3ce4e] | 5 | """ |
---|
| 6 | |
---|
| 7 | # imports |
---|
| 8 | import copy |
---|
[83a25da] | 9 | import numpy |
---|
[988130c6] | 10 | #TO DO: that about a way to make the parameter |
---|
| 11 | #is self return if it is fittable or not |
---|
[836fe6e] | 12 | |
---|
[ae3ce4e] | 13 | class BaseComponent: |
---|
[ae60f86] | 14 | """ |
---|
[79ac6f8] | 15 | Basic model component |
---|
| 16 | |
---|
| 17 | Since version 0.5.0, basic operations are no longer supported. |
---|
[ae3ce4e] | 18 | """ |
---|
| 19 | |
---|
| 20 | def __init__(self): |
---|
| 21 | """ Initialization""" |
---|
| 22 | |
---|
| 23 | ## Name of the model |
---|
[79ac6f8] | 24 | self.name = "BaseComponent" |
---|
[ae3ce4e] | 25 | |
---|
| 26 | ## Parameters to be accessed by client |
---|
| 27 | self.params = {} |
---|
[3db3895] | 28 | self.details = {} |
---|
[d30fdde] | 29 | ## Dictionary used to store the dispersity/averaging |
---|
| 30 | # parameters of dispersed/averaged parameters. |
---|
| 31 | self.dispersion = {} |
---|
[5f89fb8] | 32 | # string containing information about the model such as the equation |
---|
| 33 | #of the given model, exception or possible use |
---|
| 34 | self.description='' |
---|
[c9636f7] | 35 | #list of parameter that can be fitted |
---|
[35aface] | 36 | self.fixed = [] |
---|
| 37 | #list of non-fittable parameter |
---|
| 38 | self.non_fittable = [] |
---|
[25a608f5] | 39 | ## parameters with orientation |
---|
[35aface] | 40 | self.orientation_params = [] |
---|
[c3e4a7fa] | 41 | ## store dispersity reference |
---|
| 42 | self._persistency_dict = {} |
---|
[0145a25] | 43 | ## independent parameter name and unit [string] |
---|
| 44 | self.input_name = "Q" |
---|
| 45 | self.input_unit = "A^{-1}" |
---|
| 46 | ## output name and unit [string] |
---|
| 47 | self.output_name = "Intensity" |
---|
| 48 | self.output_unit = "cm^{-1}" |
---|
| 49 | |
---|
[ae3ce4e] | 50 | def __str__(self): |
---|
[ae60f86] | 51 | """ |
---|
[79ac6f8] | 52 | :return: string representatio |
---|
| 53 | |
---|
[ae3ce4e] | 54 | """ |
---|
| 55 | return self.name |
---|
| 56 | |
---|
[988130c6] | 57 | def is_fittable(self, par_name): |
---|
[c9636f7] | 58 | """ |
---|
[79ac6f8] | 59 | Check if a given parameter is fittable or not |
---|
| 60 | |
---|
| 61 | :param par_name: the parameter name to check |
---|
| 62 | |
---|
[c9636f7] | 63 | """ |
---|
| 64 | return par_name.lower() in self.fixed |
---|
[988130c6] | 65 | #For the future |
---|
[836fe6e] | 66 | #return self.params[str(par_name)].is_fittable() |
---|
[988130c6] | 67 | |
---|
[ae60f86] | 68 | def run(self, x): return NotImplemented |
---|
| 69 | def runXY(self, x): return NotImplemented |
---|
[f9bf661] | 70 | def calculate_ER(self): return NotImplemented |
---|
[e08bd5b] | 71 | def calculate_VR(self): return NotImplemented |
---|
[83a25da] | 72 | def evalDistribution(self, qdist): |
---|
| 73 | """ |
---|
[79ac6f8] | 74 | Evaluate a distribution of q-values. |
---|
| 75 | |
---|
| 76 | * For 1D, a numpy array is expected as input: |
---|
| 77 | |
---|
[2f1a0dc] | 78 | evalDistribution(q) |
---|
[ecc58e72] | 79 | |
---|
[79ac6f8] | 80 | where q is a numpy array. |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | * For 2D, a list of numpy arrays are expected: [qx_prime,qy_prime], |
---|
| 84 | where 1D arrays, |
---|
| 85 | |
---|
| 86 | qx_prime = [ qx[0], qx[1], qx[2], ....] |
---|
| 87 | and |
---|
| 88 | qy_prime = [ qy[0], qy[1], qy[2], ....] |
---|
| 89 | |
---|
| 90 | Then get |
---|
| 91 | q = numpy.sqrt(qx_prime^2+qy_prime^2) |
---|
| 92 | |
---|
| 93 | that is a qr in 1D array; |
---|
| 94 | q = [q[0], q[1], q[2], ....] |
---|
| 95 | |
---|
| 96 | :Note: Due to 2D speed issue, no anisotropic scattering |
---|
| 97 | is supported for python models, thus C-models should have |
---|
| 98 | their own evalDistribution methods. |
---|
| 99 | |
---|
| 100 | The method is then called the following way: |
---|
| 101 | |
---|
| 102 | evalDistribution(q) |
---|
| 103 | where q is a numpy array. |
---|
| 104 | |
---|
| 105 | :param qdist: ndarray of scalar q-values or list [qx,qy] |
---|
| 106 | where qx,qy are 1D ndarrays |
---|
| 107 | |
---|
[83a25da] | 108 | """ |
---|
[ecc58e72] | 109 | if qdist.__class__.__name__ == 'list': |
---|
| 110 | # Check whether we have a list of ndarrays [qx,qy] |
---|
| 111 | if len(qdist)!=2 or \ |
---|
| 112 | qdist[0].__class__.__name__ != 'ndarray' or \ |
---|
| 113 | qdist[1].__class__.__name__ != 'ndarray': |
---|
| 114 | raise RuntimeError, "evalDistribution expects a list of 2 ndarrays" |
---|
| 115 | |
---|
| 116 | # Extract qx and qy for code clarity |
---|
| 117 | qx = qdist[0] |
---|
| 118 | qy = qdist[1] |
---|
| 119 | |
---|
[2f1a0dc] | 120 | # calculate q_r component for 2D isotropic |
---|
| 121 | q = numpy.sqrt(qx**2+qy**2) |
---|
| 122 | # vectorize the model function runXY |
---|
| 123 | v_model = numpy.vectorize(self.runXY,otypes=[float]) |
---|
| 124 | # calculate the scattering |
---|
| 125 | iq_array = v_model(q) |
---|
| 126 | |
---|
[ecc58e72] | 127 | return iq_array |
---|
| 128 | |
---|
| 129 | elif qdist.__class__.__name__ == 'ndarray': |
---|
| 130 | # We have a simple 1D distribution of q-values |
---|
[2f1a0dc] | 131 | v_model = numpy.vectorize(self.runXY,otypes=[float]) |
---|
| 132 | iq_array = v_model(qdist) |
---|
| 133 | |
---|
[ecc58e72] | 134 | return iq_array |
---|
[83a25da] | 135 | |
---|
[ecc58e72] | 136 | else: |
---|
| 137 | mesg = "evalDistribution is expecting an ndarray of scalar q-values" |
---|
| 138 | mesg += " or a list [qx,qy] where qx,qy are 2D ndarrays." |
---|
| 139 | raise RuntimeError, mesg |
---|
[2f1a0dc] | 140 | |
---|
| 141 | |
---|
[83a25da] | 142 | |
---|
[ae3ce4e] | 143 | def clone(self): |
---|
| 144 | """ Returns a new object identical to the current object """ |
---|
| 145 | obj = copy.deepcopy(self) |
---|
[8809e48] | 146 | return self._clone(obj) |
---|
| 147 | |
---|
| 148 | def _clone(self, obj): |
---|
| 149 | """ |
---|
[79ac6f8] | 150 | Internal utility function to copy the internal |
---|
| 151 | data members to a fresh copy. |
---|
[8809e48] | 152 | """ |
---|
[ae60f86] | 153 | obj.params = copy.deepcopy(self.params) |
---|
| 154 | obj.details = copy.deepcopy(self.details) |
---|
| 155 | obj.dispersion = copy.deepcopy(self.dispersion) |
---|
[138c139] | 156 | obj._persistency_dict = copy.deepcopy( self._persistency_dict) |
---|
[ae3ce4e] | 157 | return obj |
---|
| 158 | |
---|
| 159 | def setParam(self, name, value): |
---|
[ae60f86] | 160 | """ |
---|
[79ac6f8] | 161 | Set the value of a model parameter |
---|
| 162 | |
---|
| 163 | :param name: name of the parameter |
---|
| 164 | :param value: value of the parameter |
---|
[ae3ce4e] | 165 | |
---|
| 166 | """ |
---|
[ae60f86] | 167 | # Look for dispersion parameters |
---|
| 168 | toks = name.split('.') |
---|
| 169 | if len(toks)==2: |
---|
| 170 | for item in self.dispersion.keys(): |
---|
| 171 | if item.lower()==toks[0].lower(): |
---|
| 172 | for par in self.dispersion[item]: |
---|
| 173 | if par.lower() == toks[1].lower(): |
---|
| 174 | self.dispersion[item][par] = value |
---|
| 175 | return |
---|
| 176 | else: |
---|
| 177 | # Look for standard parameter |
---|
| 178 | for item in self.params.keys(): |
---|
| 179 | if item.lower()==name.lower(): |
---|
| 180 | self.params[item] = value |
---|
| 181 | return |
---|
| 182 | |
---|
| 183 | raise ValueError, "Model does not contain parameter %s" % name |
---|
[ae3ce4e] | 184 | |
---|
[ae60f86] | 185 | def getParam(self, name): |
---|
| 186 | """ |
---|
[79ac6f8] | 187 | Set the value of a model parameter |
---|
[ae60f86] | 188 | |
---|
[79ac6f8] | 189 | :param name: name of the parameter |
---|
| 190 | |
---|
[ae3ce4e] | 191 | """ |
---|
[ae60f86] | 192 | # Look for dispersion parameters |
---|
[ae3ce4e] | 193 | toks = name.split('.') |
---|
[ae60f86] | 194 | if len(toks)==2: |
---|
| 195 | for item in self.dispersion.keys(): |
---|
| 196 | if item.lower()==toks[0].lower(): |
---|
| 197 | for par in self.dispersion[item]: |
---|
| 198 | if par.lower() == toks[1].lower(): |
---|
| 199 | return self.dispersion[item][par] |
---|
| 200 | else: |
---|
| 201 | # Look for standard parameter |
---|
| 202 | for item in self.params.keys(): |
---|
| 203 | if item.lower()==name.lower(): |
---|
| 204 | return self.params[item] |
---|
| 205 | |
---|
| 206 | raise ValueError, "Model does not contain parameter %s" % name |
---|
| 207 | |
---|
[ae3ce4e] | 208 | def getParamList(self): |
---|
| 209 | """ |
---|
[79ac6f8] | 210 | Return a list of all available parameters for the model |
---|
[ae60f86] | 211 | """ |
---|
| 212 | list = self.params.keys() |
---|
| 213 | # WARNING: Extending the list with the dispersion parameters |
---|
| 214 | list.extend(self.getDispParamList()) |
---|
| 215 | return list |
---|
| 216 | |
---|
| 217 | def getDispParamList(self): |
---|
| 218 | """ |
---|
[79ac6f8] | 219 | Return a list of all available parameters for the model |
---|
[ae60f86] | 220 | """ |
---|
| 221 | list = [] |
---|
| 222 | |
---|
| 223 | for item in self.dispersion.keys(): |
---|
| 224 | for p in self.dispersion[item].keys(): |
---|
| 225 | if p not in ['type']: |
---|
| 226 | list.append('%s.%s' % (item.lower(), p.lower())) |
---|
| 227 | |
---|
| 228 | return list |
---|
| 229 | |
---|
| 230 | # Old-style methods that are no longer used |
---|
| 231 | def setParamWithToken(self, name, value, token, member): return NotImplemented |
---|
| 232 | def getParamWithToken(self, name, token, member): return NotImplemented |
---|
| 233 | def getParamListWithToken(self, token, member): return NotImplemented |
---|
| 234 | def __add__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
| 235 | def __sub__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
| 236 | def __mul__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
| 237 | def __div__(self, other): raise ValueError, "Model operation are no longer supported" |
---|
| 238 | |
---|