source: sasview/sansmodels/src/sans/models/BarBellModel.py @ 02879ea

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 02879ea was 4628e31, checked in by Jae Cho <jhjcho@…>, 14 years ago

changed the unit of angles into degrees

  • Property mode set to 100644
File size: 5.8 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\barbell.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CBarBellModel
29import copy   
30   
31class BarBellModel(CBarBellModel, BaseComponent):
32    """
33    Class that evaluates a BarBellModel model.
34    This file was auto-generated from ..\c_extensions\barbell.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         rad_bar         = 20.0 [A]
40         len_bar         = 400.0 [A]
41         rad_bell        = 40.0 [A]
42         sld_barbell     = 1e-006 [1/A^(2)]
43         sld_solv        = 6.3e-006 [1/A^(2)]
44         background      = 0.0 [1/cm]
45         theta           = 0.0 [deg]
46         phi             = 0.0 [deg]
47
48    """
49       
50    def __init__(self):
51        """ Initialization """
52       
53        # Initialize BaseComponent first, then sphere
54        BaseComponent.__init__(self)
55        CBarBellModel.__init__(self)
56       
57        ## Name of the model
58        self.name = "BarBellModel"
59        ## Model description
60        self.description ="""Calculates the scattering from a barbell-shaped cylinder. That is
61                a sphereocylinder with spherical end caps
62                that have a radius larger than that of
63                the cylinder and the center of the end cap
64                radius lies outside of the cylinder.
65                Note: As the length of cylinder(bar) -->0,
66                it becomes a dumbbell.
67                And when rad_bar = rad_bell,
68                it is a spherocylinder.
69                It must be that rad_bar <(=) rad_bell.
70                [Parameters];
71                scale: volume fraction of spheres,
72                background:incoherent background,
73                rad_bar: radius of the cylindrical bar,
74                len_bar: length of the cylindrical bar,
75                rad_bell: radius of the spherical bell,
76                sld_barbell: SLD of the barbell,
77                sld_solv: SLD of the solvent."""
78       
79        ## Parameter details [units, min, max]
80        self.details = {}
81        self.details['scale'] = ['', None, None]
82        self.details['rad_bar'] = ['[A]', None, None]
83        self.details['len_bar'] = ['[A]', None, None]
84        self.details['rad_bell'] = ['[A]', None, None]
85        self.details['sld_barbell'] = ['[1/A^(2)]', None, None]
86        self.details['sld_solv'] = ['[1/A^(2)]', None, None]
87        self.details['background'] = ['[1/cm]', None, None]
88        self.details['theta'] = ['[deg]', None, None]
89        self.details['phi'] = ['[deg]', None, None]
90
91        ## fittable parameters
92        self.fixed=['rad_bar.width', 'len_bar', 'rad_bell', 'phi.width', 'theta.width']
93       
94        ## non-fittable parameters
95        self.non_fittable=[]
96       
97        ## parameters with orientation
98        self.orientation_params =['phi', 'theta', 'phi.width', 'theta.width']
99   
100    def clone(self):
101        """ Return a identical copy of self """
102        return self._clone(BarBellModel())   
103       
104    def __getstate__(self):
105        """
106        return object state for pickling and copying
107        """
108        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
109       
110        return self.__dict__, model_state
111       
112    def __setstate__(self, state):
113        """
114        create object from pickled state
115       
116        :param state: the state of the current model
117       
118        """
119       
120        self.__dict__, model_state = state
121        self.params = model_state['params']
122        self.dispersion = model_state['dispersion']
123        self.log = model_state['log']
124       
125   
126    def run(self, x=0.0):
127        """
128        Evaluate the model
129       
130        :param x: input q, or [q,phi]
131       
132        :return: scattering function P(q)
133       
134        """
135       
136        return CBarBellModel.run(self, x)
137   
138    def runXY(self, x=0.0):
139        """
140        Evaluate the model in cartesian coordinates
141       
142        :param x: input q, or [qx, qy]
143       
144        :return: scattering function P(q)
145       
146        """
147       
148        return CBarBellModel.runXY(self, x)
149       
150    def evalDistribution(self, x=[]):
151        """
152        Evaluate the model in cartesian coordinates
153       
154        :param x: input q[], or [qx[], qy[]]
155       
156        :return: scattering function P(q[])
157       
158        """
159        return CBarBellModel.evalDistribution(self, x)
160       
161    def calculate_ER(self):
162        """
163        Calculate the effective radius for P(q)*S(q)
164       
165        :return: the value of the effective radius
166       
167        """       
168        return CBarBellModel.calculate_ER(self)
169       
170    def set_dispersion(self, parameter, dispersion):
171        """
172        Set the dispersion object for a model parameter
173       
174        :param parameter: name of the parameter [string]
175        :param dispersion: dispersion object of type DispersionModel
176       
177        """
178        return CBarBellModel.set_dispersion(self, parameter, dispersion.cdisp)
179       
180   
181# End of file
Note: See TracBrowser for help on using the repository browser.