source: sasview/sansmodels/src/sans/models/BCCrystalModel.py @ 4bd492f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 4bd492f was 96656e3, checked in by Jae Cho <jhjcho@…>, 14 years ago

update models due to changes of template

  • Property mode set to 100644
File size: 5.6 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\bcc.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CBCCrystalModel
29import copy   
30
31def create_BCCrystalModel():
32    obj = BCCrystalModel()
33    #CBCCrystalModel.__init__(obj) is called by BCCrystalModel constructor
34    return obj
35
36class BCCrystalModel(CBCCrystalModel, BaseComponent):
37    """
38    Class that evaluates a BCCrystalModel model.
39    This file was auto-generated from ..\c_extensions\bcc.h.
40    Refer to that file and the structure it contains
41    for details of the model.
42    List of default parameters:
43         scale           = 1.0
44         dnn             = 220.0 [A]
45         d_factor        = 0.06
46         radius          = 40.0 [A]
47         sldSph          = 3e-006 [1/A^(2)]
48         sldSolv         = 6.3e-006 [1/A^(2)]
49         background      = 0.0 [1/cm]
50         theta           = 0.0 [deg]
51         phi             = 0.0 [deg]
52         psi             = 0.0 [deg]
53
54    """
55       
56    def __init__(self):
57        """ Initialization """
58       
59        # Initialize BaseComponent first, then sphere
60        BaseComponent.__init__(self)
61        #apply(CBCCrystalModel.__init__, (self,))
62        CBCCrystalModel.__init__(self)
63       
64        ## Name of the model
65        self.name = "BCCrystalModel"
66        ## Model description
67        self.description ="""P(q)=(scale/Vp)*V_lattice*P(q)*Z(q)+bkg where scale is the volume
68                fraction of sphere,
69                Vp = volume of the primary particle,
70                V_lattice = volume correction for
71                for the crystal structure,
72                P(q)= form factor of the sphere (normalized),
73                Z(q)= paracrystalline structure factor
74                for a face centered cubic structure.
75                [Body Centered Cubic ParaCrystal Model]
76                Parameters;
77                scale: volume fraction of spheres
78                bkg:background, R: radius of sphere
79                dnn: Nearest neighbor distance
80                d_factor: Paracrystal distortion factor
81                radius: radius of the spheres
82                sldSph: SLD of the sphere
83                sldSolv: SLD of the solvent
84                """
85       
86        ## Parameter details [units, min, max]
87        self.details = {}
88        self.details['scale'] = ['', None, None]
89        self.details['dnn'] = ['[A]', None, None]
90        self.details['d_factor'] = ['', None, None]
91        self.details['radius'] = ['[A]', None, None]
92        self.details['sldSph'] = ['[1/A^(2)]', None, None]
93        self.details['sldSolv'] = ['[1/A^(2)]', None, None]
94        self.details['background'] = ['[1/cm]', None, None]
95        self.details['theta'] = ['[deg]', None, None]
96        self.details['phi'] = ['[deg]', None, None]
97        self.details['psi'] = ['[deg]', None, None]
98
99        ## fittable parameters
100        self.fixed=['radius.width', 'phi.width', 'psi.width', 'theta.width']
101       
102        ## non-fittable parameters
103        self.non_fittable = []
104       
105        ## parameters with orientation
106        self.orientation_params = ['phi', 'psi', 'theta', 'phi.width', 'psi.width', 'theta.width']
107   
108    def __reduce_ex__(self, proto):
109        """
110        Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of
111        c model.
112        """
113        return (create_BCCrystalModel,tuple())
114       
115    def clone(self):
116        """ Return a identical copy of self """
117        return self._clone(BCCrystalModel())   
118       
119   
120    def run(self, x=0.0):
121        """
122        Evaluate the model
123       
124        :param x: input q, or [q,phi]
125       
126        :return: scattering function P(q)
127       
128        """
129       
130        return CBCCrystalModel.run(self, x)
131   
132    def runXY(self, x=0.0):
133        """
134        Evaluate the model in cartesian coordinates
135       
136        :param x: input q, or [qx, qy]
137       
138        :return: scattering function P(q)
139       
140        """
141       
142        return CBCCrystalModel.runXY(self, x)
143       
144    def evalDistribution(self, x=[]):
145        """
146        Evaluate the model in cartesian coordinates
147       
148        :param x: input q[], or [qx[], qy[]]
149       
150        :return: scattering function P(q[])
151       
152        """
153        return CBCCrystalModel.evalDistribution(self, x)
154       
155    def calculate_ER(self):
156        """
157        Calculate the effective radius for P(q)*S(q)
158       
159        :return: the value of the effective radius
160       
161        """       
162        return CBCCrystalModel.calculate_ER(self)
163       
164    def set_dispersion(self, parameter, dispersion):
165        """
166        Set the dispersion object for a model parameter
167       
168        :param parameter: name of the parameter [string]
169        :param dispersion: dispersion object of type DispersionModel
170       
171        """
172        return CBCCrystalModel.set_dispersion(self, parameter, dispersion.cdisp)
173       
174   
175# End of file
Note: See TracBrowser for help on using the repository browser.