source: sasview/sansmodels/src/python_wrapper/CTriaxialEllipsoidModel.cpp @ dd60b45

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since dd60b45 was 67424cd, checked in by Mathieu Doucet <doucetm@…>, 13 years ago

Reorganizing models in preparation of cpp cleanup

  • Property mode set to 100644
File size: 27.6 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CTriaxialEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY triaxial_ellipsoid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "triaxial_ellipsoid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CTriaxialEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    TriaxialEllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CTriaxialEllipsoidModel;
57
58
59static void
60CTriaxialEllipsoidModel_dealloc(CTriaxialEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CTriaxialEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CTriaxialEllipsoidModel *self;
75   
76    self = (CTriaxialEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CTriaxialEllipsoidModel_init(CTriaxialEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new TriaxialEllipsoidModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
93        PyDict_SetItemString(self->params,"axis_psi",Py_BuildValue("d",0.000000000000));
94        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",57.325000000000));
95        PyDict_SetItemString(self->params,"semi_axisA",Py_BuildValue("d",35.000000000000));
96        PyDict_SetItemString(self->params,"semi_axisB",Py_BuildValue("d",100.000000000000));
97        PyDict_SetItemString(self->params,"semi_axisC",Py_BuildValue("d",400.000000000000));
98        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",57.325000000000));
99        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000006300000));
100        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
101        PyDict_SetItemString(self->params,"sldEll",Py_BuildValue("d",0.000001000000));
102        // Initialize dispersion / averaging parameter dict
103        DispersionVisitor* visitor = new DispersionVisitor();
104        PyObject * disp_dict;
105        disp_dict = PyDict_New();
106        self->model->semi_axisA.dispersion->accept_as_source(visitor, self->model->semi_axisA.dispersion, disp_dict);
107        PyDict_SetItemString(self->dispersion, "semi_axisA", disp_dict);
108        disp_dict = PyDict_New();
109        self->model->semi_axisB.dispersion->accept_as_source(visitor, self->model->semi_axisB.dispersion, disp_dict);
110        PyDict_SetItemString(self->dispersion, "semi_axisB", disp_dict);
111        disp_dict = PyDict_New();
112        self->model->semi_axisC.dispersion->accept_as_source(visitor, self->model->semi_axisC.dispersion, disp_dict);
113        PyDict_SetItemString(self->dispersion, "semi_axisC", disp_dict);
114        disp_dict = PyDict_New();
115        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
116        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
117        disp_dict = PyDict_New();
118        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
119        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
120        disp_dict = PyDict_New();
121        self->model->axis_psi.dispersion->accept_as_source(visitor, self->model->axis_psi.dispersion, disp_dict);
122        PyDict_SetItemString(self->dispersion, "axis_psi", disp_dict);
123
124
125         
126        // Create empty log
127        self->log = PyDict_New();
128       
129       
130
131    }
132    return 0;
133}
134
135static char name_params[] = "params";
136static char def_params[] = "Parameters";
137static char name_dispersion[] = "dispersion";
138static char def_dispersion[] = "Dispersion parameters";
139static char name_log[] = "log";
140static char def_log[] = "Log";
141
142static PyMemberDef CTriaxialEllipsoidModel_members[] = {
143    {name_params, T_OBJECT, offsetof(CTriaxialEllipsoidModel, params), 0, def_params},
144        {name_dispersion, T_OBJECT, offsetof(CTriaxialEllipsoidModel, dispersion), 0, def_dispersion},     
145    {name_log, T_OBJECT, offsetof(CTriaxialEllipsoidModel, log), 0, def_log},
146    {NULL}  /* Sentinel */
147};
148
149/** Read double from PyObject
150    @param p PyObject
151    @return double
152*/
153double CTriaxialEllipsoidModel_readDouble(PyObject *p) {
154    if (PyFloat_Check(p)==1) {
155        return (double)(((PyFloatObject *)(p))->ob_fval);
156    } else if (PyInt_Check(p)==1) {
157        return (double)(((PyIntObject *)(p))->ob_ival);
158    } else if (PyLong_Check(p)==1) {
159        return (double)PyLong_AsLong(p);
160    } else {
161        return 0.0;
162    }
163}
164/**
165 * Function to call to evaluate model
166 * @param args: input numpy array q[]
167 * @return: numpy array object
168 */
169 
170static PyObject *evaluateOneDim(TriaxialEllipsoidModel* model, PyArrayObject *q){
171    PyArrayObject *result;
172   
173    // Check validity of array q , q must be of dimension 1, an array of double
174    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
175    {
176        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
177        //PyErr_SetString(PyExc_ValueError , message);
178        return NULL;
179    }
180    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
181        if (result == NULL) {
182        const char * message= "Could not create result ";
183        PyErr_SetString(PyExc_RuntimeError , message);
184                return NULL;
185        }
186#pragma omp parallel for
187         for (int i = 0; i < q->dimensions[0]; i++){
188      double q_value  = *(double *)(q->data + i*q->strides[0]);
189      double *result_value = (double *)(result->data + i*result->strides[0]);
190      *result_value =(*model)(q_value);
191        }
192    return PyArray_Return(result); 
193 }
194
195 /**
196 * Function to call to evaluate model
197 * @param args: input numpy array  [x[],y[]]
198 * @return: numpy array object
199 */
200 static PyObject * evaluateTwoDimXY( TriaxialEllipsoidModel* model, 
201                              PyArrayObject *x, PyArrayObject *y)
202 {
203    PyArrayObject *result;
204    int x_len, y_len, dims[1];
205    //check validity of input vectors
206    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
207        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
208        || y->dimensions[0] != x->dimensions[0]){
209        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
210        PyErr_SetString(PyExc_ValueError , message); 
211        return NULL;
212    }
213   
214        if (PyArray_Check(x) && PyArray_Check(y)) {
215               
216            x_len = dims[0]= x->dimensions[0];
217        y_len = dims[0]= y->dimensions[0];
218           
219            // Make a new double matrix of same dims
220        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
221        if (result == NULL){
222            const char * message= "Could not create result ";
223        PyErr_SetString(PyExc_RuntimeError , message);
224            return NULL;
225            }
226       
227        /* Do the calculation. */
228#pragma omp parallel for
229        for (int i=0; i< x_len; i++) {
230            double x_value = *(double *)(x->data + i*x->strides[0]);
231                    double y_value = *(double *)(y->data + i*y->strides[0]);
232                        double *result_value = (double *)(result->data +
233                              i*result->strides[0]);
234                        *result_value = (*model)(x_value, y_value);
235        }           
236        return PyArray_Return(result); 
237       
238        }else{
239                    PyErr_SetString(CTriaxialEllipsoidModelError, 
240                   "CTriaxialEllipsoidModel.evaluateTwoDimXY couldn't run.");
241                return NULL;
242                }       
243}
244/**
245 *  evalDistribution function evaluate a model function with input vector
246 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
247 *
248 */ 
249static PyObject * evalDistribution(CTriaxialEllipsoidModel *self, PyObject *args){
250        PyObject *qx, *qy;
251        PyArrayObject * pars;
252        int npars ,mpars;
253       
254        // Get parameters
255       
256            // Reader parameter dictionary
257    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
258    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
259    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
260    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
261    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
262    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
263    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
264    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
265    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
266    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
267    // Read in dispersion parameters
268    PyObject* disp_dict;
269    DispersionVisitor* visitor = new DispersionVisitor();
270    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
271    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
272    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
273    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
274    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
275    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
276    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
277    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
278    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
279    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
280    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
281    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
282
283       
284        // Get input and determine whether we have to supply a 1D or 2D return value.
285        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
286            PyErr_SetString(CTriaxialEllipsoidModelError, 
287                "CTriaxialEllipsoidModel.evalDistribution expects a q value.");
288                return NULL;
289        }
290    // Check params
291       
292    if(PyArray_Check(pars)==1) {
293               
294            // Length of list should 1 or 2
295            npars = pars->nd; 
296            if(npars==1) {
297                // input is a numpy array
298                if (PyArray_Check(pars)) {
299                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
300                    }
301                }else{
302                    PyErr_SetString(CTriaxialEllipsoidModelError, 
303                   "CTriaxialEllipsoidModel.evalDistribution expect numpy array of one dimension.");
304                return NULL;
305                }
306    }else if( PyList_Check(pars)==1) {
307        // Length of list should be 2 for I(qx,qy)
308            mpars = PyList_GET_SIZE(pars); 
309            if(mpars!=2) {
310                PyErr_SetString(CTriaxialEllipsoidModelError, 
311                        "CTriaxialEllipsoidModel.evalDistribution expects a list of dimension 2.");
312                return NULL;
313            }
314             qx = PyList_GET_ITEM(pars,0);
315             qy = PyList_GET_ITEM(pars,1);
316             if (PyArray_Check(qx) && PyArray_Check(qy)) {
317                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
318                           (PyArrayObject*)qy);
319                 }else{
320                    PyErr_SetString(CTriaxialEllipsoidModelError, 
321                   "CTriaxialEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
322                return NULL;
323             }
324        }
325        PyErr_SetString(CTriaxialEllipsoidModelError, 
326                   "CTriaxialEllipsoidModel.evalDistribution couln't be run.");
327        return NULL;
328       
329}
330
331/**
332 * Function to call to evaluate model
333 * @param args: input q or [q,phi]
334 * @return: function value
335 */
336static PyObject * run(CTriaxialEllipsoidModel *self, PyObject *args) {
337        double q_value, phi_value;
338        PyObject* pars;
339        int npars;
340       
341        // Get parameters
342       
343            // Reader parameter dictionary
344    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
345    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
346    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
347    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
348    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
349    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
350    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
351    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
352    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
353    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
354    // Read in dispersion parameters
355    PyObject* disp_dict;
356    DispersionVisitor* visitor = new DispersionVisitor();
357    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
358    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
359    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
360    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
361    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
362    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
363    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
364    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
365    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
366    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
367    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
368    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
369
370       
371        // Get input and determine whether we have to supply a 1D or 2D return value.
372        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
373            PyErr_SetString(CTriaxialEllipsoidModelError, 
374                "CTriaxialEllipsoidModel.run expects a q value.");
375                return NULL;
376        }
377         
378        // Check params
379        if( PyList_Check(pars)==1) {
380               
381                // Length of list should be 2 for I(q,phi)
382            npars = PyList_GET_SIZE(pars); 
383            if(npars!=2) {
384                PyErr_SetString(CTriaxialEllipsoidModelError, 
385                        "CTriaxialEllipsoidModel.run expects a double or a list of dimension 2.");
386                return NULL;
387            }
388            // We have a vector q, get the q and phi values at which
389            // to evaluate I(q,phi)
390            q_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
391            phi_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
392            // Skip zero
393            if (q_value==0) {
394                return Py_BuildValue("d",0.0);
395            }
396                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
397
398        } else {
399
400                // We have a scalar q, we will evaluate I(q)
401                q_value = CTriaxialEllipsoidModel_readDouble(pars);             
402               
403                return Py_BuildValue("d",(*(self->model))(q_value));
404        }       
405}
406/**
407 * Function to call to calculate_ER
408 * @return: effective radius value
409 */
410static PyObject * calculate_ER(CTriaxialEllipsoidModel *self) {
411
412        // Get parameters
413       
414            // Reader parameter dictionary
415    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
416    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
417    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
418    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
419    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
420    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
421    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
422    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
423    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
424    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
425    // Read in dispersion parameters
426    PyObject* disp_dict;
427    DispersionVisitor* visitor = new DispersionVisitor();
428    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
429    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
430    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
431    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
432    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
433    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
434    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
435    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
436    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
437    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
438    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
439    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
440
441               
442        return Py_BuildValue("d",(*(self->model)).calculate_ER());
443
444}
445/**
446 * Function to call to evaluate model in cartesian coordinates
447 * @param args: input q or [qx, qy]]
448 * @return: function value
449 */
450static PyObject * runXY(CTriaxialEllipsoidModel *self, PyObject *args) {
451        double qx_value, qy_value;
452        PyObject* pars;
453        int npars;
454       
455        // Get parameters
456       
457            // Reader parameter dictionary
458    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
459    self->model->axis_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_psi") );
460    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
461    self->model->semi_axisA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisA") );
462    self->model->semi_axisB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisB") );
463    self->model->semi_axisC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "semi_axisC") );
464    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
465    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
466    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
467    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
468    // Read in dispersion parameters
469    PyObject* disp_dict;
470    DispersionVisitor* visitor = new DispersionVisitor();
471    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisA");
472    self->model->semi_axisA.dispersion->accept_as_destination(visitor, self->model->semi_axisA.dispersion, disp_dict);
473    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisB");
474    self->model->semi_axisB.dispersion->accept_as_destination(visitor, self->model->semi_axisB.dispersion, disp_dict);
475    disp_dict = PyDict_GetItemString(self->dispersion, "semi_axisC");
476    self->model->semi_axisC.dispersion->accept_as_destination(visitor, self->model->semi_axisC.dispersion, disp_dict);
477    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
478    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
479    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
480    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
481    disp_dict = PyDict_GetItemString(self->dispersion, "axis_psi");
482    self->model->axis_psi.dispersion->accept_as_destination(visitor, self->model->axis_psi.dispersion, disp_dict);
483
484       
485        // Get input and determine whether we have to supply a 1D or 2D return value.
486        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
487            PyErr_SetString(CTriaxialEllipsoidModelError, 
488                "CTriaxialEllipsoidModel.run expects a q value.");
489                return NULL;
490        }
491         
492        // Check params
493        if( PyList_Check(pars)==1) {
494               
495                // Length of list should be 2 for I(qx, qy))
496            npars = PyList_GET_SIZE(pars); 
497            if(npars!=2) {
498                PyErr_SetString(CTriaxialEllipsoidModelError, 
499                        "CTriaxialEllipsoidModel.run expects a double or a list of dimension 2.");
500                return NULL;
501            }
502            // We have a vector q, get the qx and qy values at which
503            // to evaluate I(qx,qy)
504            qx_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
505            qy_value = CTriaxialEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
506            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
507
508        } else {
509
510                // We have a scalar q, we will evaluate I(q)
511                qx_value = CTriaxialEllipsoidModel_readDouble(pars);           
512               
513                return Py_BuildValue("d",(*(self->model))(qx_value));
514        }       
515}
516
517static PyObject * reset(CTriaxialEllipsoidModel *self, PyObject *args) {
518   
519
520    return Py_BuildValue("d",0.0);
521}
522
523static PyObject * set_dispersion(CTriaxialEllipsoidModel *self, PyObject *args) {
524        PyObject * disp;
525        const char * par_name;
526
527        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
528            PyErr_SetString(CTriaxialEllipsoidModelError,
529                "CTriaxialEllipsoidModel.set_dispersion expects a DispersionModel object.");
530                return NULL;
531        }
532        void *temp = PyCObject_AsVoidPtr(disp);
533        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
534
535
536        // Ugliness necessary to go from python to C
537            // TODO: refactor this
538    if (!strcmp(par_name, "semi_axisA")) {
539        self->model->semi_axisA.dispersion = dispersion;
540    } else    if (!strcmp(par_name, "semi_axisB")) {
541        self->model->semi_axisB.dispersion = dispersion;
542    } else    if (!strcmp(par_name, "semi_axisC")) {
543        self->model->semi_axisC.dispersion = dispersion;
544    } else    if (!strcmp(par_name, "axis_theta")) {
545        self->model->axis_theta.dispersion = dispersion;
546    } else    if (!strcmp(par_name, "axis_phi")) {
547        self->model->axis_phi.dispersion = dispersion;
548    } else    if (!strcmp(par_name, "axis_psi")) {
549        self->model->axis_psi.dispersion = dispersion;
550    } else {
551            PyErr_SetString(CTriaxialEllipsoidModelError,
552                "CTriaxialEllipsoidModel.set_dispersion expects a valid parameter name.");
553                return NULL;
554        }
555
556        DispersionVisitor* visitor = new DispersionVisitor();
557        PyObject * disp_dict = PyDict_New();
558        dispersion->accept_as_source(visitor, dispersion, disp_dict);
559        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
560    return Py_BuildValue("i",1);
561}
562
563
564static PyMethodDef CTriaxialEllipsoidModel_methods[] = {
565    {"run",      (PyCFunction)run     , METH_VARARGS,
566      "Evaluate the model at a given Q or Q, phi"},
567    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
568      "Evaluate the model at a given Q or Qx, Qy"},
569    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
570      "Evaluate the model at a given Q or Q, phi"},
571     
572    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
573      "Evaluate the model at a given Q or Qx, Qy vector "},
574    {"reset",    (PyCFunction)reset   , METH_VARARGS,
575      "Reset pair correlation"},
576    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
577      "Set the dispersion model for a given parameter"},
578   {NULL}
579};
580
581static PyTypeObject CTriaxialEllipsoidModelType = {
582    PyObject_HEAD_INIT(NULL)
583    0,                         /*ob_size*/
584    "CTriaxialEllipsoidModel",             /*tp_name*/
585    sizeof(CTriaxialEllipsoidModel),             /*tp_basicsize*/
586    0,                         /*tp_itemsize*/
587    (destructor)CTriaxialEllipsoidModel_dealloc, /*tp_dealloc*/
588    0,                         /*tp_print*/
589    0,                         /*tp_getattr*/
590    0,                         /*tp_setattr*/
591    0,                         /*tp_compare*/
592    0,                         /*tp_repr*/
593    0,                         /*tp_as_number*/
594    0,                         /*tp_as_sequence*/
595    0,                         /*tp_as_mapping*/
596    0,                         /*tp_hash */
597    0,                         /*tp_call*/
598    0,                         /*tp_str*/
599    0,                         /*tp_getattro*/
600    0,                         /*tp_setattro*/
601    0,                         /*tp_as_buffer*/
602    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
603    "CTriaxialEllipsoidModel objects",           /* tp_doc */
604    0,                         /* tp_traverse */
605    0,                         /* tp_clear */
606    0,                         /* tp_richcompare */
607    0,                         /* tp_weaklistoffset */
608    0,                         /* tp_iter */
609    0,                         /* tp_iternext */
610    CTriaxialEllipsoidModel_methods,             /* tp_methods */
611    CTriaxialEllipsoidModel_members,             /* tp_members */
612    0,                         /* tp_getset */
613    0,                         /* tp_base */
614    0,                         /* tp_dict */
615    0,                         /* tp_descr_get */
616    0,                         /* tp_descr_set */
617    0,                         /* tp_dictoffset */
618    (initproc)CTriaxialEllipsoidModel_init,      /* tp_init */
619    0,                         /* tp_alloc */
620    CTriaxialEllipsoidModel_new,                 /* tp_new */
621};
622
623
624//static PyMethodDef module_methods[] = {
625//    {NULL}
626//};
627
628/**
629 * Function used to add the model class to a module
630 * @param module: module to add the class to
631 */ 
632void addCTriaxialEllipsoidModel(PyObject *module) {
633        PyObject *d;
634       
635    if (PyType_Ready(&CTriaxialEllipsoidModelType) < 0)
636        return;
637
638    Py_INCREF(&CTriaxialEllipsoidModelType);
639    PyModule_AddObject(module, "CTriaxialEllipsoidModel", (PyObject *)&CTriaxialEllipsoidModelType);
640   
641    d = PyModule_GetDict(module);
642    static char error_name[] = "CTriaxialEllipsoidModel.error";
643    CTriaxialEllipsoidModelError = PyErr_NewException(error_name, NULL, NULL);
644    PyDict_SetItemString(d, "CTriaxialEllipsoidModelError", CTriaxialEllipsoidModelError);
645}
646
Note: See TracBrowser for help on using the repository browser.