source: sasview/sansmodels/src/python_wrapper/CEllipsoidModel.cpp @ 31af069

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 31af069 was 67424cd, checked in by Mathieu Doucet <doucetm@…>, 13 years ago

Reorganizing models in preparation of cpp cleanup

  • Property mode set to 100644
File size: 23.8 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY ellipsoid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "ellipsoid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipsoidModel;
57
58
59static void
60CEllipsoidModel_dealloc(CEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CEllipsoidModel *self;
75   
76    self = (CEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CEllipsoidModel_init(CEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new EllipsoidModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
93        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",90.000000000000));
94        PyDict_SetItemString(self->params,"radius_b",Py_BuildValue("d",400.000000000000));
95        PyDict_SetItemString(self->params,"radius_a",Py_BuildValue("d",20.000000000000));
96        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000000000));
97        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000001000000));
98        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
99        PyDict_SetItemString(self->params,"sldEll",Py_BuildValue("d",0.000004000000));
100        // Initialize dispersion / averaging parameter dict
101        DispersionVisitor* visitor = new DispersionVisitor();
102        PyObject * disp_dict;
103        disp_dict = PyDict_New();
104        self->model->radius_a.dispersion->accept_as_source(visitor, self->model->radius_a.dispersion, disp_dict);
105        PyDict_SetItemString(self->dispersion, "radius_a", disp_dict);
106        disp_dict = PyDict_New();
107        self->model->radius_b.dispersion->accept_as_source(visitor, self->model->radius_b.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "radius_b", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
115
116
117         
118        // Create empty log
119        self->log = PyDict_New();
120       
121       
122
123    }
124    return 0;
125}
126
127static char name_params[] = "params";
128static char def_params[] = "Parameters";
129static char name_dispersion[] = "dispersion";
130static char def_dispersion[] = "Dispersion parameters";
131static char name_log[] = "log";
132static char def_log[] = "Log";
133
134static PyMemberDef CEllipsoidModel_members[] = {
135    {name_params, T_OBJECT, offsetof(CEllipsoidModel, params), 0, def_params},
136        {name_dispersion, T_OBJECT, offsetof(CEllipsoidModel, dispersion), 0, def_dispersion},     
137    {name_log, T_OBJECT, offsetof(CEllipsoidModel, log), 0, def_log},
138    {NULL}  /* Sentinel */
139};
140
141/** Read double from PyObject
142    @param p PyObject
143    @return double
144*/
145double CEllipsoidModel_readDouble(PyObject *p) {
146    if (PyFloat_Check(p)==1) {
147        return (double)(((PyFloatObject *)(p))->ob_fval);
148    } else if (PyInt_Check(p)==1) {
149        return (double)(((PyIntObject *)(p))->ob_ival);
150    } else if (PyLong_Check(p)==1) {
151        return (double)PyLong_AsLong(p);
152    } else {
153        return 0.0;
154    }
155}
156/**
157 * Function to call to evaluate model
158 * @param args: input numpy array q[]
159 * @return: numpy array object
160 */
161 
162static PyObject *evaluateOneDim(EllipsoidModel* model, PyArrayObject *q){
163    PyArrayObject *result;
164   
165    // Check validity of array q , q must be of dimension 1, an array of double
166    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
167    {
168        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
169        //PyErr_SetString(PyExc_ValueError , message);
170        return NULL;
171    }
172    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
173        if (result == NULL) {
174        const char * message= "Could not create result ";
175        PyErr_SetString(PyExc_RuntimeError , message);
176                return NULL;
177        }
178#pragma omp parallel for
179         for (int i = 0; i < q->dimensions[0]; i++){
180      double q_value  = *(double *)(q->data + i*q->strides[0]);
181      double *result_value = (double *)(result->data + i*result->strides[0]);
182      *result_value =(*model)(q_value);
183        }
184    return PyArray_Return(result); 
185 }
186
187 /**
188 * Function to call to evaluate model
189 * @param args: input numpy array  [x[],y[]]
190 * @return: numpy array object
191 */
192 static PyObject * evaluateTwoDimXY( EllipsoidModel* model, 
193                              PyArrayObject *x, PyArrayObject *y)
194 {
195    PyArrayObject *result;
196    int x_len, y_len, dims[1];
197    //check validity of input vectors
198    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
199        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
200        || y->dimensions[0] != x->dimensions[0]){
201        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
202        PyErr_SetString(PyExc_ValueError , message); 
203        return NULL;
204    }
205   
206        if (PyArray_Check(x) && PyArray_Check(y)) {
207               
208            x_len = dims[0]= x->dimensions[0];
209        y_len = dims[0]= y->dimensions[0];
210           
211            // Make a new double matrix of same dims
212        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
213        if (result == NULL){
214            const char * message= "Could not create result ";
215        PyErr_SetString(PyExc_RuntimeError , message);
216            return NULL;
217            }
218       
219        /* Do the calculation. */
220#pragma omp parallel for
221        for (int i=0; i< x_len; i++) {
222            double x_value = *(double *)(x->data + i*x->strides[0]);
223                    double y_value = *(double *)(y->data + i*y->strides[0]);
224                        double *result_value = (double *)(result->data +
225                              i*result->strides[0]);
226                        *result_value = (*model)(x_value, y_value);
227        }           
228        return PyArray_Return(result); 
229       
230        }else{
231                    PyErr_SetString(CEllipsoidModelError, 
232                   "CEllipsoidModel.evaluateTwoDimXY couldn't run.");
233                return NULL;
234                }       
235}
236/**
237 *  evalDistribution function evaluate a model function with input vector
238 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
239 *
240 */ 
241static PyObject * evalDistribution(CEllipsoidModel *self, PyObject *args){
242        PyObject *qx, *qy;
243        PyArrayObject * pars;
244        int npars ,mpars;
245       
246        // Get parameters
247       
248            // Reader parameter dictionary
249    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
250    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
251    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
252    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
253    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
254    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
255    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
256    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
257    // Read in dispersion parameters
258    PyObject* disp_dict;
259    DispersionVisitor* visitor = new DispersionVisitor();
260    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
261    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
262    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
263    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
264    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
265    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
266    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
267    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
268
269       
270        // Get input and determine whether we have to supply a 1D or 2D return value.
271        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
272            PyErr_SetString(CEllipsoidModelError, 
273                "CEllipsoidModel.evalDistribution expects a q value.");
274                return NULL;
275        }
276    // Check params
277       
278    if(PyArray_Check(pars)==1) {
279               
280            // Length of list should 1 or 2
281            npars = pars->nd; 
282            if(npars==1) {
283                // input is a numpy array
284                if (PyArray_Check(pars)) {
285                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
286                    }
287                }else{
288                    PyErr_SetString(CEllipsoidModelError, 
289                   "CEllipsoidModel.evalDistribution expect numpy array of one dimension.");
290                return NULL;
291                }
292    }else if( PyList_Check(pars)==1) {
293        // Length of list should be 2 for I(qx,qy)
294            mpars = PyList_GET_SIZE(pars); 
295            if(mpars!=2) {
296                PyErr_SetString(CEllipsoidModelError, 
297                        "CEllipsoidModel.evalDistribution expects a list of dimension 2.");
298                return NULL;
299            }
300             qx = PyList_GET_ITEM(pars,0);
301             qy = PyList_GET_ITEM(pars,1);
302             if (PyArray_Check(qx) && PyArray_Check(qy)) {
303                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
304                           (PyArrayObject*)qy);
305                 }else{
306                    PyErr_SetString(CEllipsoidModelError, 
307                   "CEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
308                return NULL;
309             }
310        }
311        PyErr_SetString(CEllipsoidModelError, 
312                   "CEllipsoidModel.evalDistribution couln't be run.");
313        return NULL;
314       
315}
316
317/**
318 * Function to call to evaluate model
319 * @param args: input q or [q,phi]
320 * @return: function value
321 */
322static PyObject * run(CEllipsoidModel *self, PyObject *args) {
323        double q_value, phi_value;
324        PyObject* pars;
325        int npars;
326       
327        // Get parameters
328       
329            // Reader parameter dictionary
330    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
331    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
332    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
333    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
334    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
335    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
336    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
337    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
338    // Read in dispersion parameters
339    PyObject* disp_dict;
340    DispersionVisitor* visitor = new DispersionVisitor();
341    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
342    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
343    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
344    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
345    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
346    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
347    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
348    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
349
350       
351        // Get input and determine whether we have to supply a 1D or 2D return value.
352        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
353            PyErr_SetString(CEllipsoidModelError, 
354                "CEllipsoidModel.run expects a q value.");
355                return NULL;
356        }
357         
358        // Check params
359        if( PyList_Check(pars)==1) {
360               
361                // Length of list should be 2 for I(q,phi)
362            npars = PyList_GET_SIZE(pars); 
363            if(npars!=2) {
364                PyErr_SetString(CEllipsoidModelError, 
365                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
366                return NULL;
367            }
368            // We have a vector q, get the q and phi values at which
369            // to evaluate I(q,phi)
370            q_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
371            phi_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
372            // Skip zero
373            if (q_value==0) {
374                return Py_BuildValue("d",0.0);
375            }
376                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
377
378        } else {
379
380                // We have a scalar q, we will evaluate I(q)
381                q_value = CEllipsoidModel_readDouble(pars);             
382               
383                return Py_BuildValue("d",(*(self->model))(q_value));
384        }       
385}
386/**
387 * Function to call to calculate_ER
388 * @return: effective radius value
389 */
390static PyObject * calculate_ER(CEllipsoidModel *self) {
391
392        // Get parameters
393       
394            // Reader parameter dictionary
395    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
396    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
397    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
398    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
399    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
400    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
401    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
402    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
403    // Read in dispersion parameters
404    PyObject* disp_dict;
405    DispersionVisitor* visitor = new DispersionVisitor();
406    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
407    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
408    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
409    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
410    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
411    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
412    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
413    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
414
415               
416        return Py_BuildValue("d",(*(self->model)).calculate_ER());
417
418}
419/**
420 * Function to call to evaluate model in cartesian coordinates
421 * @param args: input q or [qx, qy]]
422 * @return: function value
423 */
424static PyObject * runXY(CEllipsoidModel *self, PyObject *args) {
425        double qx_value, qy_value;
426        PyObject* pars;
427        int npars;
428       
429        // Get parameters
430       
431            // Reader parameter dictionary
432    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
433    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
434    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
435    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
436    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
437    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
438    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
439    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
440    // Read in dispersion parameters
441    PyObject* disp_dict;
442    DispersionVisitor* visitor = new DispersionVisitor();
443    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
444    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
445    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
446    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
447    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
448    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
449    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
450    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
451
452       
453        // Get input and determine whether we have to supply a 1D or 2D return value.
454        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
455            PyErr_SetString(CEllipsoidModelError, 
456                "CEllipsoidModel.run expects a q value.");
457                return NULL;
458        }
459         
460        // Check params
461        if( PyList_Check(pars)==1) {
462               
463                // Length of list should be 2 for I(qx, qy))
464            npars = PyList_GET_SIZE(pars); 
465            if(npars!=2) {
466                PyErr_SetString(CEllipsoidModelError, 
467                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
468                return NULL;
469            }
470            // We have a vector q, get the qx and qy values at which
471            // to evaluate I(qx,qy)
472            qx_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
473            qy_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
474            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
475
476        } else {
477
478                // We have a scalar q, we will evaluate I(q)
479                qx_value = CEllipsoidModel_readDouble(pars);           
480               
481                return Py_BuildValue("d",(*(self->model))(qx_value));
482        }       
483}
484
485static PyObject * reset(CEllipsoidModel *self, PyObject *args) {
486   
487
488    return Py_BuildValue("d",0.0);
489}
490
491static PyObject * set_dispersion(CEllipsoidModel *self, PyObject *args) {
492        PyObject * disp;
493        const char * par_name;
494
495        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
496            PyErr_SetString(CEllipsoidModelError,
497                "CEllipsoidModel.set_dispersion expects a DispersionModel object.");
498                return NULL;
499        }
500        void *temp = PyCObject_AsVoidPtr(disp);
501        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
502
503
504        // Ugliness necessary to go from python to C
505            // TODO: refactor this
506    if (!strcmp(par_name, "radius_a")) {
507        self->model->radius_a.dispersion = dispersion;
508    } else    if (!strcmp(par_name, "radius_b")) {
509        self->model->radius_b.dispersion = dispersion;
510    } else    if (!strcmp(par_name, "axis_theta")) {
511        self->model->axis_theta.dispersion = dispersion;
512    } else    if (!strcmp(par_name, "axis_phi")) {
513        self->model->axis_phi.dispersion = dispersion;
514    } else {
515            PyErr_SetString(CEllipsoidModelError,
516                "CEllipsoidModel.set_dispersion expects a valid parameter name.");
517                return NULL;
518        }
519
520        DispersionVisitor* visitor = new DispersionVisitor();
521        PyObject * disp_dict = PyDict_New();
522        dispersion->accept_as_source(visitor, dispersion, disp_dict);
523        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
524    return Py_BuildValue("i",1);
525}
526
527
528static PyMethodDef CEllipsoidModel_methods[] = {
529    {"run",      (PyCFunction)run     , METH_VARARGS,
530      "Evaluate the model at a given Q or Q, phi"},
531    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
532      "Evaluate the model at a given Q or Qx, Qy"},
533    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
534      "Evaluate the model at a given Q or Q, phi"},
535     
536    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
537      "Evaluate the model at a given Q or Qx, Qy vector "},
538    {"reset",    (PyCFunction)reset   , METH_VARARGS,
539      "Reset pair correlation"},
540    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
541      "Set the dispersion model for a given parameter"},
542   {NULL}
543};
544
545static PyTypeObject CEllipsoidModelType = {
546    PyObject_HEAD_INIT(NULL)
547    0,                         /*ob_size*/
548    "CEllipsoidModel",             /*tp_name*/
549    sizeof(CEllipsoidModel),             /*tp_basicsize*/
550    0,                         /*tp_itemsize*/
551    (destructor)CEllipsoidModel_dealloc, /*tp_dealloc*/
552    0,                         /*tp_print*/
553    0,                         /*tp_getattr*/
554    0,                         /*tp_setattr*/
555    0,                         /*tp_compare*/
556    0,                         /*tp_repr*/
557    0,                         /*tp_as_number*/
558    0,                         /*tp_as_sequence*/
559    0,                         /*tp_as_mapping*/
560    0,                         /*tp_hash */
561    0,                         /*tp_call*/
562    0,                         /*tp_str*/
563    0,                         /*tp_getattro*/
564    0,                         /*tp_setattro*/
565    0,                         /*tp_as_buffer*/
566    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
567    "CEllipsoidModel objects",           /* tp_doc */
568    0,                         /* tp_traverse */
569    0,                         /* tp_clear */
570    0,                         /* tp_richcompare */
571    0,                         /* tp_weaklistoffset */
572    0,                         /* tp_iter */
573    0,                         /* tp_iternext */
574    CEllipsoidModel_methods,             /* tp_methods */
575    CEllipsoidModel_members,             /* tp_members */
576    0,                         /* tp_getset */
577    0,                         /* tp_base */
578    0,                         /* tp_dict */
579    0,                         /* tp_descr_get */
580    0,                         /* tp_descr_set */
581    0,                         /* tp_dictoffset */
582    (initproc)CEllipsoidModel_init,      /* tp_init */
583    0,                         /* tp_alloc */
584    CEllipsoidModel_new,                 /* tp_new */
585};
586
587
588//static PyMethodDef module_methods[] = {
589//    {NULL}
590//};
591
592/**
593 * Function used to add the model class to a module
594 * @param module: module to add the class to
595 */ 
596void addCEllipsoidModel(PyObject *module) {
597        PyObject *d;
598       
599    if (PyType_Ready(&CEllipsoidModelType) < 0)
600        return;
601
602    Py_INCREF(&CEllipsoidModelType);
603    PyModule_AddObject(module, "CEllipsoidModel", (PyObject *)&CEllipsoidModelType);
604   
605    d = PyModule_GetDict(module);
606    static char error_name[] = "CEllipsoidModel.error";
607    CEllipsoidModelError = PyErr_NewException(error_name, NULL, NULL);
608    PyDict_SetItemString(d, "CEllipsoidModelError", CEllipsoidModelError);
609}
610
Note: See TracBrowser for help on using the repository browser.