source: sasview/sansmodels/src/python_wrapper/CCSParallelepipedModel.cpp @ acd0fd10

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since acd0fd10 was 67424cd, checked in by Mathieu Doucet <doucetm@…>, 13 years ago

Reorganizing models in preparation of cpp cleanup

  • Property mode set to 100644
File size: 30.1 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CCSParallelepipedModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY csparallelepiped.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "csparallelepiped.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CCSParallelepipedModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    CSParallelepipedModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CCSParallelepipedModel;
57
58
59static void
60CCSParallelepipedModel_dealloc(CCSParallelepipedModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CCSParallelepipedModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CCSParallelepipedModel *self;
75   
76    self = (CCSParallelepipedModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CCSParallelepipedModel_init(CCSParallelepipedModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new CSParallelepipedModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"sld_rimB",Py_BuildValue("d",0.000004000000));
93        PyDict_SetItemString(self->params,"sld_rimC",Py_BuildValue("d",0.000002000000));
94        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
95        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.060000000000));
96        PyDict_SetItemString(self->params,"parallel_psi",Py_BuildValue("d",0.000000000000));
97        PyDict_SetItemString(self->params,"midB",Py_BuildValue("d",75.000000000000));
98        PyDict_SetItemString(self->params,"parallel_theta",Py_BuildValue("d",0.000000000000));
99        PyDict_SetItemString(self->params,"parallel_phi",Py_BuildValue("d",0.000000000000));
100        PyDict_SetItemString(self->params,"sld_pcore",Py_BuildValue("d",0.000001000000));
101        PyDict_SetItemString(self->params,"sld_rimA",Py_BuildValue("d",0.000002000000));
102        PyDict_SetItemString(self->params,"shortA",Py_BuildValue("d",35.000000000000));
103        PyDict_SetItemString(self->params,"rimB",Py_BuildValue("d",10.000000000000));
104        PyDict_SetItemString(self->params,"rimC",Py_BuildValue("d",10.000000000000));
105        PyDict_SetItemString(self->params,"longC",Py_BuildValue("d",400.000000000000));
106        PyDict_SetItemString(self->params,"sld_solv",Py_BuildValue("d",0.000006000000));
107        PyDict_SetItemString(self->params,"rimA",Py_BuildValue("d",10.000000000000));
108        // Initialize dispersion / averaging parameter dict
109        DispersionVisitor* visitor = new DispersionVisitor();
110        PyObject * disp_dict;
111        disp_dict = PyDict_New();
112        self->model->shortA.dispersion->accept_as_source(visitor, self->model->shortA.dispersion, disp_dict);
113        PyDict_SetItemString(self->dispersion, "shortA", disp_dict);
114        disp_dict = PyDict_New();
115        self->model->midB.dispersion->accept_as_source(visitor, self->model->midB.dispersion, disp_dict);
116        PyDict_SetItemString(self->dispersion, "midB", disp_dict);
117        disp_dict = PyDict_New();
118        self->model->longC.dispersion->accept_as_source(visitor, self->model->longC.dispersion, disp_dict);
119        PyDict_SetItemString(self->dispersion, "longC", disp_dict);
120        disp_dict = PyDict_New();
121        self->model->parallel_phi.dispersion->accept_as_source(visitor, self->model->parallel_phi.dispersion, disp_dict);
122        PyDict_SetItemString(self->dispersion, "parallel_phi", disp_dict);
123        disp_dict = PyDict_New();
124        self->model->parallel_psi.dispersion->accept_as_source(visitor, self->model->parallel_psi.dispersion, disp_dict);
125        PyDict_SetItemString(self->dispersion, "parallel_psi", disp_dict);
126        disp_dict = PyDict_New();
127        self->model->parallel_theta.dispersion->accept_as_source(visitor, self->model->parallel_theta.dispersion, disp_dict);
128        PyDict_SetItemString(self->dispersion, "parallel_theta", disp_dict);
129
130
131         
132        // Create empty log
133        self->log = PyDict_New();
134       
135       
136
137    }
138    return 0;
139}
140
141static char name_params[] = "params";
142static char def_params[] = "Parameters";
143static char name_dispersion[] = "dispersion";
144static char def_dispersion[] = "Dispersion parameters";
145static char name_log[] = "log";
146static char def_log[] = "Log";
147
148static PyMemberDef CCSParallelepipedModel_members[] = {
149    {name_params, T_OBJECT, offsetof(CCSParallelepipedModel, params), 0, def_params},
150        {name_dispersion, T_OBJECT, offsetof(CCSParallelepipedModel, dispersion), 0, def_dispersion},     
151    {name_log, T_OBJECT, offsetof(CCSParallelepipedModel, log), 0, def_log},
152    {NULL}  /* Sentinel */
153};
154
155/** Read double from PyObject
156    @param p PyObject
157    @return double
158*/
159double CCSParallelepipedModel_readDouble(PyObject *p) {
160    if (PyFloat_Check(p)==1) {
161        return (double)(((PyFloatObject *)(p))->ob_fval);
162    } else if (PyInt_Check(p)==1) {
163        return (double)(((PyIntObject *)(p))->ob_ival);
164    } else if (PyLong_Check(p)==1) {
165        return (double)PyLong_AsLong(p);
166    } else {
167        return 0.0;
168    }
169}
170/**
171 * Function to call to evaluate model
172 * @param args: input numpy array q[]
173 * @return: numpy array object
174 */
175 
176static PyObject *evaluateOneDim(CSParallelepipedModel* model, PyArrayObject *q){
177    PyArrayObject *result;
178   
179    // Check validity of array q , q must be of dimension 1, an array of double
180    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
181    {
182        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
183        //PyErr_SetString(PyExc_ValueError , message);
184        return NULL;
185    }
186    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), PyArray_DOUBLE);
187        if (result == NULL) {
188        const char * message= "Could not create result ";
189        PyErr_SetString(PyExc_RuntimeError , message);
190                return NULL;
191        }
192#pragma omp parallel for
193         for (int i = 0; i < q->dimensions[0]; i++){
194      double q_value  = *(double *)(q->data + i*q->strides[0]);
195      double *result_value = (double *)(result->data + i*result->strides[0]);
196      *result_value =(*model)(q_value);
197        }
198    return PyArray_Return(result); 
199 }
200
201 /**
202 * Function to call to evaluate model
203 * @param args: input numpy array  [x[],y[]]
204 * @return: numpy array object
205 */
206 static PyObject * evaluateTwoDimXY( CSParallelepipedModel* model, 
207                              PyArrayObject *x, PyArrayObject *y)
208 {
209    PyArrayObject *result;
210    int x_len, y_len, dims[1];
211    //check validity of input vectors
212    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
213        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
214        || y->dimensions[0] != x->dimensions[0]){
215        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
216        PyErr_SetString(PyExc_ValueError , message); 
217        return NULL;
218    }
219   
220        if (PyArray_Check(x) && PyArray_Check(y)) {
221               
222            x_len = dims[0]= x->dimensions[0];
223        y_len = dims[0]= y->dimensions[0];
224           
225            // Make a new double matrix of same dims
226        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
227        if (result == NULL){
228            const char * message= "Could not create result ";
229        PyErr_SetString(PyExc_RuntimeError , message);
230            return NULL;
231            }
232       
233        /* Do the calculation. */
234#pragma omp parallel for
235        for (int i=0; i< x_len; i++) {
236            double x_value = *(double *)(x->data + i*x->strides[0]);
237                    double y_value = *(double *)(y->data + i*y->strides[0]);
238                        double *result_value = (double *)(result->data +
239                              i*result->strides[0]);
240                        *result_value = (*model)(x_value, y_value);
241        }           
242        return PyArray_Return(result); 
243       
244        }else{
245                    PyErr_SetString(CCSParallelepipedModelError, 
246                   "CCSParallelepipedModel.evaluateTwoDimXY couldn't run.");
247                return NULL;
248                }       
249}
250/**
251 *  evalDistribution function evaluate a model function with input vector
252 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
253 *
254 */ 
255static PyObject * evalDistribution(CCSParallelepipedModel *self, PyObject *args){
256        PyObject *qx, *qy;
257        PyArrayObject * pars;
258        int npars ,mpars;
259       
260        // Get parameters
261       
262            // Reader parameter dictionary
263    self->model->sld_rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimB") );
264    self->model->sld_rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimC") );
265    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
266    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
267    self->model->parallel_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_psi") );
268    self->model->midB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "midB") );
269    self->model->parallel_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_theta") );
270    self->model->parallel_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_phi") );
271    self->model->sld_pcore = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_pcore") );
272    self->model->sld_rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimA") );
273    self->model->shortA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shortA") );
274    self->model->rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimB") );
275    self->model->rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimC") );
276    self->model->longC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "longC") );
277    self->model->sld_solv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solv") );
278    self->model->rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimA") );
279    // Read in dispersion parameters
280    PyObject* disp_dict;
281    DispersionVisitor* visitor = new DispersionVisitor();
282    disp_dict = PyDict_GetItemString(self->dispersion, "shortA");
283    self->model->shortA.dispersion->accept_as_destination(visitor, self->model->shortA.dispersion, disp_dict);
284    disp_dict = PyDict_GetItemString(self->dispersion, "midB");
285    self->model->midB.dispersion->accept_as_destination(visitor, self->model->midB.dispersion, disp_dict);
286    disp_dict = PyDict_GetItemString(self->dispersion, "longC");
287    self->model->longC.dispersion->accept_as_destination(visitor, self->model->longC.dispersion, disp_dict);
288    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_phi");
289    self->model->parallel_phi.dispersion->accept_as_destination(visitor, self->model->parallel_phi.dispersion, disp_dict);
290    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_psi");
291    self->model->parallel_psi.dispersion->accept_as_destination(visitor, self->model->parallel_psi.dispersion, disp_dict);
292    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_theta");
293    self->model->parallel_theta.dispersion->accept_as_destination(visitor, self->model->parallel_theta.dispersion, disp_dict);
294
295       
296        // Get input and determine whether we have to supply a 1D or 2D return value.
297        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
298            PyErr_SetString(CCSParallelepipedModelError, 
299                "CCSParallelepipedModel.evalDistribution expects a q value.");
300                return NULL;
301        }
302    // Check params
303       
304    if(PyArray_Check(pars)==1) {
305               
306            // Length of list should 1 or 2
307            npars = pars->nd; 
308            if(npars==1) {
309                // input is a numpy array
310                if (PyArray_Check(pars)) {
311                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
312                    }
313                }else{
314                    PyErr_SetString(CCSParallelepipedModelError, 
315                   "CCSParallelepipedModel.evalDistribution expect numpy array of one dimension.");
316                return NULL;
317                }
318    }else if( PyList_Check(pars)==1) {
319        // Length of list should be 2 for I(qx,qy)
320            mpars = PyList_GET_SIZE(pars); 
321            if(mpars!=2) {
322                PyErr_SetString(CCSParallelepipedModelError, 
323                        "CCSParallelepipedModel.evalDistribution expects a list of dimension 2.");
324                return NULL;
325            }
326             qx = PyList_GET_ITEM(pars,0);
327             qy = PyList_GET_ITEM(pars,1);
328             if (PyArray_Check(qx) && PyArray_Check(qy)) {
329                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
330                           (PyArrayObject*)qy);
331                 }else{
332                    PyErr_SetString(CCSParallelepipedModelError, 
333                   "CCSParallelepipedModel.evalDistribution expect 2 numpy arrays in list.");
334                return NULL;
335             }
336        }
337        PyErr_SetString(CCSParallelepipedModelError, 
338                   "CCSParallelepipedModel.evalDistribution couln't be run.");
339        return NULL;
340       
341}
342
343/**
344 * Function to call to evaluate model
345 * @param args: input q or [q,phi]
346 * @return: function value
347 */
348static PyObject * run(CCSParallelepipedModel *self, PyObject *args) {
349        double q_value, phi_value;
350        PyObject* pars;
351        int npars;
352       
353        // Get parameters
354       
355            // Reader parameter dictionary
356    self->model->sld_rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimB") );
357    self->model->sld_rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimC") );
358    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
359    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
360    self->model->parallel_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_psi") );
361    self->model->midB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "midB") );
362    self->model->parallel_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_theta") );
363    self->model->parallel_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_phi") );
364    self->model->sld_pcore = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_pcore") );
365    self->model->sld_rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimA") );
366    self->model->shortA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shortA") );
367    self->model->rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimB") );
368    self->model->rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimC") );
369    self->model->longC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "longC") );
370    self->model->sld_solv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solv") );
371    self->model->rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimA") );
372    // Read in dispersion parameters
373    PyObject* disp_dict;
374    DispersionVisitor* visitor = new DispersionVisitor();
375    disp_dict = PyDict_GetItemString(self->dispersion, "shortA");
376    self->model->shortA.dispersion->accept_as_destination(visitor, self->model->shortA.dispersion, disp_dict);
377    disp_dict = PyDict_GetItemString(self->dispersion, "midB");
378    self->model->midB.dispersion->accept_as_destination(visitor, self->model->midB.dispersion, disp_dict);
379    disp_dict = PyDict_GetItemString(self->dispersion, "longC");
380    self->model->longC.dispersion->accept_as_destination(visitor, self->model->longC.dispersion, disp_dict);
381    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_phi");
382    self->model->parallel_phi.dispersion->accept_as_destination(visitor, self->model->parallel_phi.dispersion, disp_dict);
383    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_psi");
384    self->model->parallel_psi.dispersion->accept_as_destination(visitor, self->model->parallel_psi.dispersion, disp_dict);
385    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_theta");
386    self->model->parallel_theta.dispersion->accept_as_destination(visitor, self->model->parallel_theta.dispersion, disp_dict);
387
388       
389        // Get input and determine whether we have to supply a 1D or 2D return value.
390        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
391            PyErr_SetString(CCSParallelepipedModelError, 
392                "CCSParallelepipedModel.run expects a q value.");
393                return NULL;
394        }
395         
396        // Check params
397        if( PyList_Check(pars)==1) {
398               
399                // Length of list should be 2 for I(q,phi)
400            npars = PyList_GET_SIZE(pars); 
401            if(npars!=2) {
402                PyErr_SetString(CCSParallelepipedModelError, 
403                        "CCSParallelepipedModel.run expects a double or a list of dimension 2.");
404                return NULL;
405            }
406            // We have a vector q, get the q and phi values at which
407            // to evaluate I(q,phi)
408            q_value = CCSParallelepipedModel_readDouble(PyList_GET_ITEM(pars,0));
409            phi_value = CCSParallelepipedModel_readDouble(PyList_GET_ITEM(pars,1));
410            // Skip zero
411            if (q_value==0) {
412                return Py_BuildValue("d",0.0);
413            }
414                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
415
416        } else {
417
418                // We have a scalar q, we will evaluate I(q)
419                q_value = CCSParallelepipedModel_readDouble(pars);             
420               
421                return Py_BuildValue("d",(*(self->model))(q_value));
422        }       
423}
424/**
425 * Function to call to calculate_ER
426 * @return: effective radius value
427 */
428static PyObject * calculate_ER(CCSParallelepipedModel *self) {
429
430        // Get parameters
431       
432            // Reader parameter dictionary
433    self->model->sld_rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimB") );
434    self->model->sld_rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimC") );
435    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
436    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
437    self->model->parallel_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_psi") );
438    self->model->midB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "midB") );
439    self->model->parallel_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_theta") );
440    self->model->parallel_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_phi") );
441    self->model->sld_pcore = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_pcore") );
442    self->model->sld_rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimA") );
443    self->model->shortA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shortA") );
444    self->model->rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimB") );
445    self->model->rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimC") );
446    self->model->longC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "longC") );
447    self->model->sld_solv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solv") );
448    self->model->rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimA") );
449    // Read in dispersion parameters
450    PyObject* disp_dict;
451    DispersionVisitor* visitor = new DispersionVisitor();
452    disp_dict = PyDict_GetItemString(self->dispersion, "shortA");
453    self->model->shortA.dispersion->accept_as_destination(visitor, self->model->shortA.dispersion, disp_dict);
454    disp_dict = PyDict_GetItemString(self->dispersion, "midB");
455    self->model->midB.dispersion->accept_as_destination(visitor, self->model->midB.dispersion, disp_dict);
456    disp_dict = PyDict_GetItemString(self->dispersion, "longC");
457    self->model->longC.dispersion->accept_as_destination(visitor, self->model->longC.dispersion, disp_dict);
458    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_phi");
459    self->model->parallel_phi.dispersion->accept_as_destination(visitor, self->model->parallel_phi.dispersion, disp_dict);
460    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_psi");
461    self->model->parallel_psi.dispersion->accept_as_destination(visitor, self->model->parallel_psi.dispersion, disp_dict);
462    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_theta");
463    self->model->parallel_theta.dispersion->accept_as_destination(visitor, self->model->parallel_theta.dispersion, disp_dict);
464
465               
466        return Py_BuildValue("d",(*(self->model)).calculate_ER());
467
468}
469/**
470 * Function to call to evaluate model in cartesian coordinates
471 * @param args: input q or [qx, qy]]
472 * @return: function value
473 */
474static PyObject * runXY(CCSParallelepipedModel *self, PyObject *args) {
475        double qx_value, qy_value;
476        PyObject* pars;
477        int npars;
478       
479        // Get parameters
480       
481            // Reader parameter dictionary
482    self->model->sld_rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimB") );
483    self->model->sld_rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimC") );
484    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
485    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
486    self->model->parallel_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_psi") );
487    self->model->midB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "midB") );
488    self->model->parallel_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_theta") );
489    self->model->parallel_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "parallel_phi") );
490    self->model->sld_pcore = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_pcore") );
491    self->model->sld_rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_rimA") );
492    self->model->shortA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "shortA") );
493    self->model->rimB = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimB") );
494    self->model->rimC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimC") );
495    self->model->longC = PyFloat_AsDouble( PyDict_GetItemString(self->params, "longC") );
496    self->model->sld_solv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solv") );
497    self->model->rimA = PyFloat_AsDouble( PyDict_GetItemString(self->params, "rimA") );
498    // Read in dispersion parameters
499    PyObject* disp_dict;
500    DispersionVisitor* visitor = new DispersionVisitor();
501    disp_dict = PyDict_GetItemString(self->dispersion, "shortA");
502    self->model->shortA.dispersion->accept_as_destination(visitor, self->model->shortA.dispersion, disp_dict);
503    disp_dict = PyDict_GetItemString(self->dispersion, "midB");
504    self->model->midB.dispersion->accept_as_destination(visitor, self->model->midB.dispersion, disp_dict);
505    disp_dict = PyDict_GetItemString(self->dispersion, "longC");
506    self->model->longC.dispersion->accept_as_destination(visitor, self->model->longC.dispersion, disp_dict);
507    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_phi");
508    self->model->parallel_phi.dispersion->accept_as_destination(visitor, self->model->parallel_phi.dispersion, disp_dict);
509    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_psi");
510    self->model->parallel_psi.dispersion->accept_as_destination(visitor, self->model->parallel_psi.dispersion, disp_dict);
511    disp_dict = PyDict_GetItemString(self->dispersion, "parallel_theta");
512    self->model->parallel_theta.dispersion->accept_as_destination(visitor, self->model->parallel_theta.dispersion, disp_dict);
513
514       
515        // Get input and determine whether we have to supply a 1D or 2D return value.
516        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
517            PyErr_SetString(CCSParallelepipedModelError, 
518                "CCSParallelepipedModel.run expects a q value.");
519                return NULL;
520        }
521         
522        // Check params
523        if( PyList_Check(pars)==1) {
524               
525                // Length of list should be 2 for I(qx, qy))
526            npars = PyList_GET_SIZE(pars); 
527            if(npars!=2) {
528                PyErr_SetString(CCSParallelepipedModelError, 
529                        "CCSParallelepipedModel.run expects a double or a list of dimension 2.");
530                return NULL;
531            }
532            // We have a vector q, get the qx and qy values at which
533            // to evaluate I(qx,qy)
534            qx_value = CCSParallelepipedModel_readDouble(PyList_GET_ITEM(pars,0));
535            qy_value = CCSParallelepipedModel_readDouble(PyList_GET_ITEM(pars,1));
536            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
537
538        } else {
539
540                // We have a scalar q, we will evaluate I(q)
541                qx_value = CCSParallelepipedModel_readDouble(pars);             
542               
543                return Py_BuildValue("d",(*(self->model))(qx_value));
544        }       
545}
546
547static PyObject * reset(CCSParallelepipedModel *self, PyObject *args) {
548   
549
550    return Py_BuildValue("d",0.0);
551}
552
553static PyObject * set_dispersion(CCSParallelepipedModel *self, PyObject *args) {
554        PyObject * disp;
555        const char * par_name;
556
557        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
558            PyErr_SetString(CCSParallelepipedModelError,
559                "CCSParallelepipedModel.set_dispersion expects a DispersionModel object.");
560                return NULL;
561        }
562        void *temp = PyCObject_AsVoidPtr(disp);
563        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
564
565
566        // Ugliness necessary to go from python to C
567            // TODO: refactor this
568    if (!strcmp(par_name, "shortA")) {
569        self->model->shortA.dispersion = dispersion;
570    } else    if (!strcmp(par_name, "midB")) {
571        self->model->midB.dispersion = dispersion;
572    } else    if (!strcmp(par_name, "longC")) {
573        self->model->longC.dispersion = dispersion;
574    } else    if (!strcmp(par_name, "parallel_phi")) {
575        self->model->parallel_phi.dispersion = dispersion;
576    } else    if (!strcmp(par_name, "parallel_psi")) {
577        self->model->parallel_psi.dispersion = dispersion;
578    } else    if (!strcmp(par_name, "parallel_theta")) {
579        self->model->parallel_theta.dispersion = dispersion;
580    } else {
581            PyErr_SetString(CCSParallelepipedModelError,
582                "CCSParallelepipedModel.set_dispersion expects a valid parameter name.");
583                return NULL;
584        }
585
586        DispersionVisitor* visitor = new DispersionVisitor();
587        PyObject * disp_dict = PyDict_New();
588        dispersion->accept_as_source(visitor, dispersion, disp_dict);
589        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
590    return Py_BuildValue("i",1);
591}
592
593
594static PyMethodDef CCSParallelepipedModel_methods[] = {
595    {"run",      (PyCFunction)run     , METH_VARARGS,
596      "Evaluate the model at a given Q or Q, phi"},
597    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
598      "Evaluate the model at a given Q or Qx, Qy"},
599    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
600      "Evaluate the model at a given Q or Q, phi"},
601     
602    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
603      "Evaluate the model at a given Q or Qx, Qy vector "},
604    {"reset",    (PyCFunction)reset   , METH_VARARGS,
605      "Reset pair correlation"},
606    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
607      "Set the dispersion model for a given parameter"},
608   {NULL}
609};
610
611static PyTypeObject CCSParallelepipedModelType = {
612    PyObject_HEAD_INIT(NULL)
613    0,                         /*ob_size*/
614    "CCSParallelepipedModel",             /*tp_name*/
615    sizeof(CCSParallelepipedModel),             /*tp_basicsize*/
616    0,                         /*tp_itemsize*/
617    (destructor)CCSParallelepipedModel_dealloc, /*tp_dealloc*/
618    0,                         /*tp_print*/
619    0,                         /*tp_getattr*/
620    0,                         /*tp_setattr*/
621    0,                         /*tp_compare*/
622    0,                         /*tp_repr*/
623    0,                         /*tp_as_number*/
624    0,                         /*tp_as_sequence*/
625    0,                         /*tp_as_mapping*/
626    0,                         /*tp_hash */
627    0,                         /*tp_call*/
628    0,                         /*tp_str*/
629    0,                         /*tp_getattro*/
630    0,                         /*tp_setattro*/
631    0,                         /*tp_as_buffer*/
632    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
633    "CCSParallelepipedModel objects",           /* tp_doc */
634    0,                         /* tp_traverse */
635    0,                         /* tp_clear */
636    0,                         /* tp_richcompare */
637    0,                         /* tp_weaklistoffset */
638    0,                         /* tp_iter */
639    0,                         /* tp_iternext */
640    CCSParallelepipedModel_methods,             /* tp_methods */
641    CCSParallelepipedModel_members,             /* tp_members */
642    0,                         /* tp_getset */
643    0,                         /* tp_base */
644    0,                         /* tp_dict */
645    0,                         /* tp_descr_get */
646    0,                         /* tp_descr_set */
647    0,                         /* tp_dictoffset */
648    (initproc)CCSParallelepipedModel_init,      /* tp_init */
649    0,                         /* tp_alloc */
650    CCSParallelepipedModel_new,                 /* tp_new */
651};
652
653
654//static PyMethodDef module_methods[] = {
655//    {NULL}
656//};
657
658/**
659 * Function used to add the model class to a module
660 * @param module: module to add the class to
661 */ 
662void addCCSParallelepipedModel(PyObject *module) {
663        PyObject *d;
664       
665    if (PyType_Ready(&CCSParallelepipedModelType) < 0)
666        return;
667
668    Py_INCREF(&CCSParallelepipedModelType);
669    PyModule_AddObject(module, "CCSParallelepipedModel", (PyObject *)&CCSParallelepipedModelType);
670   
671    d = PyModule_GetDict(module);
672    static char error_name[] = "CCSParallelepipedModel.error";
673    CCSParallelepipedModelError = PyErr_NewException(error_name, NULL, NULL);
674    PyDict_SetItemString(d, "CCSParallelepipedModelError", CCSParallelepipedModelError);
675}
676
Note: See TracBrowser for help on using the repository browser.