[6e93a02] | 1 | /* winFuncs.c |
---|
| 2 | Adding functions missing from windows math library |
---|
| 3 | Andrew Jackson, October 2007 |
---|
| 4 | */ |
---|
| 5 | |
---|
| 6 | #include <stdio.h> |
---|
| 7 | #include <math.h> |
---|
| 8 | |
---|
| 9 | #include "winFuncs.h" |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | double fmax(double x, double y){ |
---|
| 13 | //Doesn't exactly match BSD as if one or other value is NaN behaviour is undefined |
---|
| 14 | //BSD returns the other value if one is NaN and NaN if both are NaN |
---|
| 15 | //probably wouldn't want to rely on that in any case. |
---|
| 16 | if (x > y) { |
---|
| 17 | //x is greater than y |
---|
| 18 | return x; |
---|
| 19 | } else if (y > x) { |
---|
| 20 | //y is greater than x |
---|
| 21 | return y; |
---|
| 22 | } else { |
---|
| 23 | //equal |
---|
| 24 | return x; |
---|
| 25 | } |
---|
| 26 | } |
---|
| 27 | |
---|
| 28 | double fmin(double x, double y){ |
---|
| 29 | //Doesn't exactly match BSD as if one or other value is NaN behaviour is undefined |
---|
| 30 | //BSD returns the other value if one is NaN and NaN if both are NaN |
---|
| 31 | //probably wouldn't want to rely on that in any case. |
---|
| 32 | if (x < y) { |
---|
| 33 | //x is less than y |
---|
| 34 | return x; |
---|
| 35 | } else if (y < x) { |
---|
| 36 | //y is less than x |
---|
| 37 | return y; |
---|
| 38 | } else { |
---|
| 39 | //equal |
---|
| 40 | return x; |
---|
| 41 | } |
---|
| 42 | } |
---|
| 43 | |
---|
| 44 | double trunc(double x){ |
---|
| 45 | //This is probably slow as hell |
---|
| 46 | if (x > 0){ |
---|
| 47 | //positive - need floor |
---|
| 48 | return floor(x); |
---|
| 49 | } else if (x < 0) { |
---|
| 50 | //negative - need ceiling |
---|
| 51 | return ceil(x); |
---|
| 52 | } else { |
---|
| 53 | //x is zero or infinity, return x |
---|
| 54 | return x; |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | } |
---|
| 58 | |
---|
| 59 | |
---|
| 60 | /* erf.c - public domain implementation of error function erf(3m) |
---|
| 61 | |
---|
| 62 | reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten |
---|
| 63 | (New Algorithm handbook in C language) (Gijyutsu hyouron |
---|
| 64 | sha, Tokyo, 1991) p.227 [in Japanese] */ |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | #ifdef _WIN32 |
---|
| 68 | # include <float.h> |
---|
| 69 | # if !defined __MINGW32__ || defined __NO_ISOCEXT |
---|
| 70 | # ifndef isnan |
---|
| 71 | # define isnan(x) _isnan(x) |
---|
| 72 | # endif |
---|
| 73 | # ifndef isinf |
---|
| 74 | # define isinf(x) (!_finite(x) && !_isnan(x)) |
---|
| 75 | # endif |
---|
| 76 | # ifndef finite |
---|
| 77 | # define finite(x) _finite(x) |
---|
| 78 | # endif |
---|
| 79 | # endif |
---|
| 80 | #endif |
---|
| 81 | |
---|
| 82 | static double q_gamma(double, double, double); |
---|
| 83 | |
---|
| 84 | /* Incomplete gamma function |
---|
| 85 | 1 / Gamma(a) * Int_0^x exp(-t) t^(a-1) dt */ |
---|
| 86 | static double p_gamma(double a, double x, double loggamma_a) |
---|
| 87 | { |
---|
| 88 | int k; |
---|
| 89 | double result, term, previous; |
---|
| 90 | |
---|
| 91 | if (x >= 1 + a) return 1 - q_gamma(a, x, loggamma_a); |
---|
| 92 | if (x == 0) return 0; |
---|
| 93 | result = term = exp(a * log(x) - x - loggamma_a) / a; |
---|
| 94 | for (k = 1; k < 1000; k++) { |
---|
| 95 | term *= x / (a + k); |
---|
| 96 | previous = result; result += term; |
---|
| 97 | if (result == previous) return result; |
---|
| 98 | } |
---|
| 99 | fprintf(stderr, "erf.c:%d:p_gamma() could not converge.", __LINE__); |
---|
| 100 | return result; |
---|
| 101 | } |
---|
| 102 | |
---|
| 103 | /* Incomplete gamma function |
---|
| 104 | 1 / Gamma(a) * Int_x^inf exp(-t) t^(a-1) dt */ |
---|
| 105 | static double q_gamma(double a, double x, double loggamma_a) |
---|
| 106 | { |
---|
| 107 | int k; |
---|
| 108 | double result, w, temp, previous; |
---|
| 109 | double la = 1, lb = 1 + x - a; /* Laguerre polynomial */ |
---|
| 110 | |
---|
| 111 | if (x < 1 + a) return 1 - p_gamma(a, x, loggamma_a); |
---|
| 112 | w = exp(a * log(x) - x - loggamma_a); |
---|
| 113 | result = w / lb; |
---|
| 114 | for (k = 2; k < 1000; k++) { |
---|
| 115 | temp = ((k - 1 - a) * (lb - la) + (k + x) * lb) / k; |
---|
| 116 | la = lb; lb = temp; |
---|
| 117 | w *= (k - 1 - a) / k; |
---|
| 118 | temp = w / (la * lb); |
---|
| 119 | previous = result; result += temp; |
---|
| 120 | if (result == previous) return result; |
---|
| 121 | } |
---|
| 122 | fprintf(stderr, "erf.c:%d:q_gamma() could not converge.", __LINE__); |
---|
| 123 | return result; |
---|
| 124 | } |
---|
| 125 | |
---|
| 126 | #define LOG_PI_OVER_2 0.572364942924700087071713675675 /* log_e(PI)/2 */ |
---|
| 127 | |
---|
| 128 | double erf(double x) |
---|
| 129 | { |
---|
| 130 | if (!finite(x)) { |
---|
| 131 | if (isnan(x)) return x; /* erf(NaN) = NaN */ |
---|
| 132 | return (x>0 ? 1.0 : -1.0); /* erf(+-inf) = +-1.0 */ |
---|
| 133 | } |
---|
| 134 | if (x >= 0) return p_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 135 | else return - p_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | double erfc(double x) |
---|
| 139 | { |
---|
| 140 | if (!finite(x)) { |
---|
| 141 | if (isnan(x)) return x; /* erfc(NaN) = NaN */ |
---|
| 142 | return (x>0 ? 0.0 : 2.0); /* erfc(+-inf) = 0.0, 2.0 */ |
---|
| 143 | } |
---|
| 144 | if (x >= 0) return q_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 145 | else return 1 + p_gamma(0.5, x * x, LOG_PI_OVER_2); |
---|
| 146 | } |
---|